节点文献

一种PMN网络的GEM训练算法

An Efficient GEM Training Algorithm for Probability Mapping Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 熊汉春李海洲

【Author】 Xiong Hanchun; Li Haizhou (Dept. of Electronic & Telcom. Engineering, South China Univ. of Tech. Guangzhou 510641)

【机构】 华南理工大学电子与通信工程系!广州510641

【摘要】 本文提出一种概率映射网络(PMN)的CEM(GeneralExpectationMaximization)训练算法,它是EM(ExpectionMaximization)算法的一种改进算法。PMN网为一个四层前馈网。它构成一个贝叶斯分类器,实现多类分类的贝叶斯判别,把输入的样本模式经网络变换为输出的分类判决,其网络节点对应于贝叶斯后验概率公式的各个变量。此PMN网络用高斯校函数作为密度函数,网络参数的训练由GEM算法实现,其学习方式为类间的监督学习和类内的非监督学习。最后的实验表明了此网络及其学习算法在分类应用中的有效性。

【Abstract】 A General Expectation Maximization(GEM) training algorithm for estimating the parameters of a Probability Mapping Network(PMN) is proposed in this paper. This is an improvement of EM (Expectation Maximization)algorithm. A PMN is a four-layer, Feed-forward Neural Network (FNN) with its nodes adopting Gaussian probability density function. As a multi-category Bayes classifier, A PMN outputs classification result after inputting sample patterns. In this way, EM algorithm is generalized to deal with supervised learning from inter-categories or unsupervised learning from intracategory. The effectiveness of the proposed network and it’s GEM algorithm are verified by two experiments.

【基金】 国家教委外事司归国人员研究基金;广东省自然科学基金!970445
  • 【文献出处】 电路与系统学报 ,JOURNAL OF CIRCUITS AND SYSTEMS , 编辑部邮箱 ,1998年04期
  • 【分类号】TP18
  • 【下载频次】43
节点文献中: 

本文链接的文献网络图示:

本文的引文网络