节点文献

基于神经网络的超声无损检测缺陷定征方法的研究

Neural network characterization of flaws detected by ultrasonic approach

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘伟军王晓明吴宏基刘健

【Author】 Liu Weijun, Wang Xiaoming, Wu Hongji, Liu Jian ( Dept. of Mech. Eng., Dalian Univ. of Technol., China )

【机构】 大连理工大学机械工程系

【摘要】 针对超声无损检测中缺陷分类难、分类结果可靠性差等问题,给出了一种以神经网络为基础的缺陷特征分类方法.利用Fisher线性判别方法对表征缺陷特征的时域信号的波形参数进行了选择,并将这些参数作为神经网络的输入矢量对网络进行训练.用该网络对缺陷特征进行了识别,结果表明:神经网络的识别率远大于传统的贝叶斯分类方法.

【Abstract】 A methodology for the recognition of weld defects, detected by ultrasonic approach, has been developed within two stages. In the first stage, a selection of the shape parameters defining the pulse echo envelope reflected from a genertic flaws, and defined in the time domain, is performed by Fisher linear discriminant analysis. In the second stage, the classification is carried out by a three layered RBFN nerual network, where the input values are the parameters selected by Fisher analysis. With regard to the neural network learning process, 135 weld defects have been considered, and the effectiveness of this approach has been confirmed by discriminant result.

【基金】 辽宁省自然科学基金
  • 【文献出处】 大连理工大学学报 ,JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY , 编辑部邮箱 ,1998年05期
  • 【分类号】TP18
  • 【被引频次】20
  • 【下载频次】224
节点文献中: 

本文链接的文献网络图示:

本文的引文网络