节点文献
k-正则偶图对集矩阵的分解定理
DECOMPOSITION THEOREMS ON THE BIPARTITION MATRICES OF k REGULAR BIPARTITITE GRAPHS
【摘要】 证明了一个n阶非负实矩阵可分解为某些n阶置换矩阵的线性组合的定理,由此得到了k-正则偶图的对集矩阵的分解定理.这些定理及其证明给出了k-正则偶图的完美匹配的构造方法,并举例说明对集矩阵的分解不是唯一的.
【Abstract】 In this paper we prove a theorem, which says that a nonnegative real matrix of order n can be decomposited into a linear combination of some permutation matrices of order n . It follows that decomposition theorems on the bipartition matrices of k regular bipartite graphs are obtained. These theorems and their proofs show a structural method for finding the perfect matchings of a k regular bipartite graph. We present an example to show that the decomposition of a bipartition matrix is not unique.
【关键词】 k-正则偶图;
对集矩阵;
置换矩阵;
完美匹配;
【Key words】 k regular bipartite graph; bipartition matrix; permutation matrix; perfect matching;
【Key words】 k regular bipartite graph; bipartition matrix; permutation matrix; perfect matching;
- 【文献出处】 天津大学学报 ,Journal of Tianjin University , 编辑部邮箱 ,1997年05期
- 【分类号】O151.21
- 【下载频次】49