节点文献
一阶微分方程组边值问题的神经网络解法
A NEURAL NETWORK SOLUTION TO THE FIRST ORDER DIFFERENTIAL EQUATIONS
【摘要】 本文利用多层前向神经网络的函数逼近能力,推导出一阶微分方程组边值问题的神经网络解法,为一阶微分方程组的近似解析解的求取提供了便于工程应用的新方法.
【Abstract】 Based on the theory that a hidden multi-feedforward neural network can approximate a square integral function with an arbitrary accuracy, a method to solve the first order diiferential equations using neural networks is proposed. The approximated solution to the first order differential equations can be achieved which is useful for practical applications.
【关键词】 多层前向神经网络;
微分方程;
边值问题;
【Key words】 Multi-Feedforward Neural Network; Differential Equations; Boundary Value Problem;
【Key words】 Multi-Feedforward Neural Network; Differential Equations; Boundary Value Problem;
【基金】 国家自然科学基金
- 【文献出处】 模式识别与人工智能 ,Pattern Recognition and Artificial Intelligence , 编辑部邮箱 ,1997年04期
- 【分类号】TP183
- 【被引频次】2
- 【下载频次】143