节点文献

一类非线性离散时间系统的神经网络解耦策略

A NEURAL NETWORK DECOUPLING STRATEGY FOR A CLASS OF NONLINEAR DISCRETE TIME SYSTEMS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吴黎明柴天佑

【Author】 WU LIMING CHAI TIANYOU (Research Center for Automation, Northeastern University, Shenyang 110006)

【机构】 东北大学自动化中心

【摘要】 考虑用神经网络作为补偿器,对一类非线性系统进行输入输出解耦.给出了这类系统的可解耦的充要条件,并证明在该条件下系统可解耦成线性系统且极点可任意配置.基于此,给出了这类系统的一个神经网络解耦方法

【Abstract】 A neural network is considered to be used as a compensator for input output decoupling of a class of nonlinear discrete time systems. A necessary and sufficient condition for the solvability of the decoupling problem for the class of discrete time systems is given. It is also shown that if the decouling problem is solvable, the modified systems can be linear and the poles of the modified systems can be freely assigned. Based on this result, a strategy for realizing decoupling via neural networks is proposed. Simulation results supports our theory and the decoupling strategy proposed in this paper.

  • 【分类号】TP271.8
  • 【被引频次】39
  • 【下载频次】156
节点文献中: 

本文链接的文献网络图示:

本文的引文网络