节点文献
一种基于模糊聚类的图象分割方法
A FUZZY CLUSTERING BASED APPROACH TO IMAGE SEGMENTATION
【摘要】 模糊C-均值(FCM)算法用于图象分割,是一种非监督模糊聚类后标定的过程.但是,FCM算法存在着一些不足,进而限制了它在某些方面的应用.本文提出了一种基于模糊聚类的图象分割方法,较好解决了FCM算法所遇到的问题.且本文从数学上和实验上证明了这种方法的有效性
【Abstract】 Fuzzy C means (FCM) clustering can be used for image segmentation,which is a procedure of the label following a unsupervised fuzzy clustering.However,there are some deficiencies in the FCM algorithm,which limit its application in some aspects.A fuzzy clustering based approach to image segmentation is proposed in this paper,which conquers the deficiencies encountered in FCM.The feasibility of the approach is proved mathematically and experimentally.
【关键词】 图象分割;
模糊聚类;
模糊C-均值算法;
直方图分析;
【Key words】 image segmentation; fuzzy clustering; fuzzy C means algorithm; histogram analysis.;
【Key words】 image segmentation; fuzzy clustering; fuzzy C means algorithm; histogram analysis.;
【基金】 国家教委博士点基金,国家自然科学基金
- 【文献出处】 计算机研究与发展 ,JOURNAL OF COMPUTER RESEARCH AND DEVELOPMENT , 编辑部邮箱 ,1997年07期
- 【分类号】TP391.4
- 【被引频次】131
- 【下载频次】560