节点文献

二次有理双圆弧曲线及其在CAD中的应用

Rational Bicircular Arcs and Their Application to CAD

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 孙建泉张兴太

【Author】 Sun Jianquan; Zhang Xingtai(College of Science, NUAA Nanjing, 210016)

【机构】 南京航空航天大学理学院

【摘要】 阐明了由三点P0,P1,P2确定的双圆弧的连接点可用控制点表示,其轨迹是圆心在P0P1中垂线上,半径为的圆弧是(l=|P0P2|,θ1,θ2△P0P1P2的底角)。提出了三种满足光顺性要求的选择连接点的方法。证明了用二次有理Bezier曲线精确表示圆弧的充要条件是其中k≠0,ω0,ω1,ω2为权因子。进而建立了双圆弧曲线的有理参数方程,即其中Fi(t)与Gi(t)是双圆弧基函数。作为应用,最后构造了一类以双圆弧为横向截线的曲面,包括其特殊情形双圆弧锥面和双圆弧柱面。

【Abstract】 It is explained that the joint of a bicircular arc determined by three points P0,P1,P2may be represented by control points and its path is a circular arc with radius andits center is on the perpendicular bisector of, where θ1, and θ2 are the bottomangles of the △P0P1P2). Three methods by which the joint of bicircular arc is chosen are provided to satisfy the demand. The necessary and sufficient conditions for representing a circulararc as rational quadric Bener curve are investigatedwhere k≠0, ω0, ω1 and ω2 are weights.Hence the bicircular arc may be represented in a rational parametric equationwhere Fi(t) and Gi(t) are bicircular basic functions and tp is the parament of joint. Lastly as anapplication, surfaces whose cross--sections are bicircular arcs are constructed. Bicircular conicaland bicircular pillar surfaces are contained in these surfaces as particular cases. These algorithms are useful in shape design and numerical control.

  • 【文献出处】 南京航空航天大学学报 ,TRANSACTIONS OF NANJING UNIVERSITY OF AERONAUTICS & ASTRONAUTICS , 编辑部邮箱 ,1996年01期
  • 【分类号】TP391.4
  • 【下载频次】84
节点文献中: 

本文链接的文献网络图示:

本文的引文网络