节点文献
用于旋转机械故障诊断的一种张量增强型前向神经网络模型
AN EXPANSIONAL ENHANCED FEEDFORWARD NEURAL NETWORK MODEL FOR FAULT DIAGNOSIS OF ROTATING MACHINERY
【摘要】 在多层前向神经网络模型的研究基础上,提出了基于张量的增强型前向神经网络诊断模型,以实现在已知输入模式不变的情况下,增强原始模式的表达,从而提高了诊断的精度。试验结果表明,本模型对工程应用具有较高的实用价值。
【Abstract】 A new expansional enhanced feed forward neural network model for fault diagnosis of rotating machinery was further provided in this paper, based on studying a conventional back--propagation diagnostic neuralnetwork. This improved approach to fault diagnosis considerably extends the network’S capability for representingcomplex nonlinear relationships between the types of faults and symptoms,promotes the diagnostic accuracy byadding a number of functional units in the input layer. The experimental results show the effectively practical values for engineering applications.
【关键词】 故障诊断;
旋转机械;
神经网络;
前向神经网络;
张量的增强型;
【Key words】 fault diagnosis; rotating machinery; neural network; feedforward neural network; expansional enhanced;
【Key words】 fault diagnosis; rotating machinery; neural network; feedforward neural network; expansional enhanced;
- 【文献出处】 机械强度 ,JOURNAL OF MECHANICAL STRENGTH , 编辑部邮箱 ,1996年03期
- 【分类号】TP206.3
- 【被引频次】4
- 【下载频次】80