节点文献
环面Fuchs方程解的性质及其可积性
PROPERTIES OF SOLUTIONS AND INTEGRABILITY OF FUCHSIAN EQUATIONS ON THE TORUS T ̄2
【摘要】 研究环面T2上只有一个正则奇点的Fuchs方程.得到了参数λ=6时,方程有一个椭圆函数解,其任何解皆为半纯函数,以及方程的单值群为可解群的结果.在此基础上,将Riemann球面上Fuchs方程的可积性概念推广到环面上,并得到一系列环面Fuchs方程都是可积的结果.
【Abstract】 A class of Fuchsian equations on the torns T2 is studied. In the case of parameter λ=6,there exists an elliptic function solution,each solution of which is a meromorphic function, and it’s monodromy group is soluable.Soluability of the monodromy groups is used to define the integrablity for Fuchsian equations on the torns T2,and in this sense,these equations are integrable for a serie of parameters.
【关键词】 正则奇点;
正则微分方程;
方程解;
单换;
可解群;
【Key words】 regularity singular points; regular diferential equations; solution of eqation; monodromy; soluble groups;
【Key words】 regularity singular points; regular diferential equations; solution of eqation; monodromy; soluble groups;
【基金】 国家自然科学基金
- 【文献出处】 北京航空航天大学学报 ,JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS , 编辑部邮箱 ,1996年01期
- 【分类号】O175.12
- 【下载频次】27