节点文献
任意维数的强阻尼非线性波动方程(Ⅰ)——初边值问题
Strongly Damped Nonlinear Wave Equation in Arbitrary Dimensions( I )--Initial-Boundary Value Problem
【摘要】 本文研究任意维数的强阻尼非线性波动方程utt—α△ut-△u=f(u)具第一类齐边界条件的初边值问题,设f∈C1,f'(u)上方有界,且当n≥4时存在常数A,B和户,使|f'(u)|≤A|u|p+B,其中0<p≤4/(n—4)(n>4);0<p<∞(n=4),得到唯一整体强解,从而改进和推广了已知结果。
【Abstract】 In this paper we study the initial-boundary value problem with first homogeneous boundary condition for the strongly damped nonlinear wave equation in arbitrary dimensions. Suppose that is upper bounded and when n>4, there existA,B and p such that then the unique global strong solution can be obtained, so the known results are improved and generalized.
【关键词】 强阻尼;
非线性;
波动方程;
任意维;
初边值;
【Key words】 Strongly damp; Nonlinear wave equation; Arbitrary dimensions; Initial-boundary value;
【Key words】 Strongly damp; Nonlinear wave equation; Arbitrary dimensions; Initial-boundary value;
- 【文献出处】 应用数学 ,Mathematica Applicata , 编辑部邮箱 ,1995年03期
- 【分类号】O175
- 【被引频次】32
- 【下载频次】97