节点文献
用神经网络─遗传算法优化MgO-B2O3─SiO2渣系组成
OPTIMIZATION OF MgO-B2O3-SiO2 SLAGGING USING ARTIFICIAL NEURAL NETWORK AND GENETIC ALGORITHM
【摘要】 应用人工神经网络对MgO-B2O3-SiO2渣系组成与硼提取率关系进行拟合和预测,首次采用遗传算法对组成优化,并得到最佳硼提取率所对应的组成。
【Abstract】 The relation among the MgO-B2O3-SiO2 slag compositions and the efficiencies of extraction of B has been fitted and predicated by artificial neural network. The optimum composition corresponding to the highest efficiency of extraction of B was obtained using genetic algorithm. It is believed that the artificial neural network and genetic algorithm may provide a new and effective way for fitting and optimizing the process of extraction of B.
【关键词】 神经网络;
遗传算法;
组成;
优化;
MgO-B2O3-SiO2渣系;
【Key words】 artificial neural network; genetic algorithm; optimization of composition; boron; MgO-B2O3 SiO2 slag;
【Key words】 artificial neural network; genetic algorithm; optimization of composition; boron; MgO-B2O3 SiO2 slag;
【基金】 国家自然科学基金
- 【文献出处】 金属学报 ,ACTA METALLRUGICA SINICA , 编辑部邮箱 ,1995年18期
- 【分类号】TF524
- 【被引频次】20
- 【下载频次】100