节点文献

用神经网络─遗传算法优化MgO-B2O3─SiO2渣系组成

OPTIMIZATION OF MgO-B2O3-SiO2 SLAGGING USING ARTIFICIAL NEURAL NETWORK AND GENETIC ALGORITHM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张培新张奇志吴黎明隋智通

【Author】 ZHA NG Peixin; ZHA NG Qizhi; W U Liming; SUI Zhitong(Northeasiern Unirersity.Shenyang 110006)

【机构】 东北大学

【摘要】 应用人工神经网络对MgO-B-SiO渣系组成与硼提取率关系进行拟合和预测,首次采用遗传算法对组成优化,并得到最佳硼提取率所对应的组成。

【Abstract】 The relation among the MgO-B2O3-SiO2 slag compositions and the efficiencies of extraction of B has been fitted and predicated by artificial neural network. The optimum composition corresponding to the highest efficiency of extraction of B was obtained using genetic algorithm. It is believed that the artificial neural network and genetic algorithm may provide a new and effective way for fitting and optimizing the process of extraction of B.

【基金】 国家自然科学基金
  • 【文献出处】 金属学报 ,ACTA METALLRUGICA SINICA , 编辑部邮箱 ,1995年18期
  • 【分类号】TF524
  • 【被引频次】20
  • 【下载频次】100
节点文献中: 

本文链接的文献网络图示:

本文的引文网络