节点文献
复振型导数计算的移位多次模态加速法
A shifted-poles and multiple modal acceleration method for computing complex mode shape derivatlves
【摘要】 本文研究了含粘性阻尼结构的复振型导数计算问题,将导数计算问题看成是一个简谐激振的响应计算问题,采用多次模态加速法和移位法,导出了复振型导数计算的移位多次模态加速法。该方法具有明确的数学和物理意义,可导出已有的各种计算方法。算例表明本方法计算复振型导数只需用很少几个模态即可保证精度,计算量大大减少。
【Abstract】 Computing the derivatives of complex mode shapes is regarded as calculating the struc-tural response to harmonic exciting in this paper.Using multiple modal accelerations andshifted-poles,a universal method to calculate the mode shape derivatives has been devel-oped. The method possesses the clear mathematical and physical meaning,and all availablemodal superposition methods would be directly obtained from the proposed method.Numeri-cal examples show that the method is correct and efficient.
【关键词】 灵敏度分析;
振型;
复模态;
模态加速法;
【Key words】 modes of vibration/sensitivity analysis,complex mode; modal acceleration method;
【Key words】 modes of vibration/sensitivity analysis,complex mode; modal acceleration method;
【基金】 国家自然科学基金
- 【文献出处】 计算结构力学及其应用 , 编辑部邮箱 ,1995年02期
- 【分类号】TB123
- 【被引频次】1
- 【下载频次】45