节点文献
人工神经网络在合金钢研制和生产中的应用
ARTIFICIAL NEURAL NETWORK APPLIED TO ALLOY STEEL RESEARCH
【摘要】 本文试用人工神经网络总结合金钢研制数据中的规律,并应用偏相关指数表征各影响因子对合金钢性能影响的程度。计算结果表明,IF钢的延伸率、耐低温钢的无塑性变形温度预报值与实测值相当符合。根据偏相关指数绝对值的大小判别影响耐深冲钢合格率的主要因素效果亦佳。
【Abstract】 Artificial neural network has been used to investigate the regularities of experimental data in new alloy steel exploration works, and the partial correlation index has been used to find the relative importance of various factors affecting the properties of alloy steel samples. The results of computation indicate that the elongation of IF steel, the temperature of zero plastic deformation of low-temperature steel predicted are in agreement with the experimental data. The relative importance of factors influencing the quality of ST14 steel are found, and the dominating factors found are useful for the industrial optimization of steel production.
【Key words】 Artificial neural network; Partial correlation index; Alloy steel;
- 【文献出处】 计算机与应用化学 ,COMPUTERS AND APPLIED CHEMISTRY , 编辑部邮箱 ,1994年03期
- 【分类号】TG142.33
- 【被引频次】13
- 【下载频次】80