节点文献
含高阶导数的Runge-Kutta方法的稳定性准则
STABILITY CRITERIA FOR RUNGE-KUTTA METHODS WITH HIGHER DERIVATIVES
【摘要】 <正> 1987年,李寿佛针对RKMs求解Hilbert空间中的K类初值问题建立了(θ,p,q)-代数稳定性准则。本文试图对此准则作适当扩充使其适合于求解Hilbert空间中的Kp类IVPs的含高阶导数的RKMs。为此,本文第二节给出了Kp类IVPs的某些性质;第三节建
【Abstract】 In this paper, the theory on (0, p, q)-algebraic stability of Runge-Kutta methods (RKMs) for the initial value problems (IVPs) of the class K0.t in a Hilbert space, which was presented by Li shoufu in 1987, is generalized. We establish the concept of (θ,α, β)-algebraic stability of RKMs with higher derivatives for the IVPs of the class K(P)σ,τ in a Hilbert space. It is shown that a (θ,α,β)-algebraically stable RKM with higher derivatives is necessarily ( 1-()转换成multiply from i=1 to s ()θi,α,β)-algebraically stable, therefore it is ( 1 -()转换成multiply from i=1 to s ()θi,α,β)) -stable.
- 【文献出处】 高等学校计算数学学报 ,Numerical Mathematics A Journal of Chinese Universities , 编辑部邮箱 ,1994年03期
- 【分类号】O241
- 【被引频次】5
- 【下载频次】106