节点文献
介子波动方程的Kustanheimo-Stiefel变换解(英文)
A SOLUTION OF MESON WAVE EQUATION UNDER KUSTANHEIMO—STIEFEL TRANSFORMATION
【摘要】 本文把满足约束pi2+mi2+U(x2)=0(i=1,2)的二质点组的相对论力学应用于介子的SU3模型,并取U(x2)形为α+bx2,采用Kustanheimo—Stiefel变换(简称k—S变换),可把上述具有四维协变谐振子的介子结构模型化为三维氢原子问题。在求解中,不必取非协变规范就能较自然地避开时间自由度激发的困难,同时求得分子质量平方的G·0公式和J对μ2的直线关系。
【Abstract】 In this paper, the constraint equations pi2+m12+U(x2)=0(i=1,2)are applied to the SU3 model of mesons. Taking U(x2)for a+bx2,the problem of a four-dimensional harmonic oscillator canbe transformed to that of a three-dimensional hydrogen with constrant from K-S transforma-tion. On that basis, we can avoid in a natural way the difficulty of the excitation of the time degreeof freedom and obtain the mass-squared formula for mesons.
【关键词】 小岛方程;
K-S变换;
质量谱;
瑞奇轨迹;
【Key words】 kojima equation; K—S transformation; mass spectrum; regge track;
【Key words】 kojima equation; K—S transformation; mass spectrum; regge track;
- 【文献出处】 长沙水电师院学报(自然科学版) , 编辑部邮箱 ,1993年04期
- 【分类号】O572.33;
- 【下载频次】3