节点文献
保守双摆的不可积性和混沌
Non-lntegrability and Chaos of a Conservative Compound Pendulum
【摘要】 本文用Birkhoff级数正则变换方法求出保守双摆运动方程的近似积分,并把近似积分的等值曲线与数值仿真结果作了比较.由此清楚地看出.当能级提高时,系统由近可积的成为不可积的,即其运动情况由规则的转变为混沌的.本文还介绍了演示上述性态的一个保守双摆模型.
【Abstract】 By using a series of canonical transformations (Birkhoff’s series), an approximate integral of a conservative compound pendulum is evaluated. Level lines of this approximate integral are compared with the numerical simulation results. It is seen clearly that with a raised energy level, the nearly integrable system becomes noh-integrable,i.e. the regular motion pattern changes to the chaotic one. Experiments with such a pendulum device display the behavior mentioned above.
【关键词】 保守双摆;
不可积性;
混沌;
正则变换;
数值仿真;
Birkhoff级数;
【Key words】 conservative compound pendulum; non-integrability; chaos; canonicaltransformation; numerical simulation; Birkhoff’s series; normal form; nth-fold resonance;
【Key words】 conservative compound pendulum; non-integrability; chaos; canonicaltransformation; numerical simulation; Birkhoff’s series; normal form; nth-fold resonance;
【基金】 国家教委博士点科研基金资助项目
- 【文献出处】 应用数学和力学 ,Applied Mathematics and Mechanics , 编辑部邮箱 ,1992年01期
- 【被引频次】5
- 【下载频次】219