节点文献
局部对称共形平坦黎曼流形中具有平行平均曲率向量的子流形
The Submanifolds with Parallel Mean Curvature Vector in a Locally Symmetric and Conformally Flat Riemannian Manifold
【摘要】 本文把[1]的结论推广到了环绕空间是局部对称共形平坦的情形,即获得了:设M~是局部对称共形平坦黎曼流形N~+p(p>1)中具有平行平均曲率向量的紧致子流形,如果则M~位于N~+p的全测地子流形N~+1中。其中S,H分别是M~的第二基本形式长度的平方和M~的平均曲率,T_C、t_c分别是N~+p的Ricci曲率的上、下确界,K是N~+p的数量曲率。
【Abstract】 In the present paper we obtain the following result: Theorem Let MR be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold Nn+p(p>1). If then Mn lies in a totally geodesic submanifold Nn+1.
【关键词】 局部对称;
共形平坦;
平行平均曲率向量;
【Key words】 Locally symmetric; conformally flat; parallel mean curvature vector;
【Key words】 Locally symmetric; conformally flat; parallel mean curvature vector;
- 【文献出处】 数学季刊 ,Chinese Quarterly Journal of Mathematics , 编辑部邮箱 ,1992年01期
- 【被引频次】10
- 【下载频次】41