节点文献
常微分方程的广函解
On Generalized-Function Solutions of Ordinary Differential Equations
【摘要】 本文讨论形如sum from i=0 to n ai(t)xa-i(t)=0的常微分方程的广函解。通过把问题化为代数方程。归结为对某个相关矩阵及其增广矩阵的秩的讨论,给出了m阶广函解存在的一般形式的充分必要条件,并指出了确定广函解阶数的途径。
【Abstract】 This paper deals with the existence of generalized-function solutionsfor the ordinary differential equations of the form sum from i=1 to n(ai(t)x(n-i)(t))=0.By deducing the question into an algebraic equations, it is put in theanalysis for ranks of a related matrix and its augmented matrix. Asufficient and necessary condition with a general form is given for theexistence of generalized-function solutions of m-order, and the ways aregiven to determine orders of generalized-function solutions.
【关键词】 常微分方程;
广函解;
增广矩阵;
【Key words】 ordinary differential equation; generalized-function solution; augmented matrix;
【Key words】 ordinary differential equation; generalized-function solution; augmented matrix;
【基金】 国家自然科学基金
- 【文献出处】 兰州大学学报 ,Journal of Lanzhou University , 编辑部邮箱 ,1991年02期
- 【被引频次】2
- 【下载频次】26