节点文献
算子的拟相似与Kato本质谱的连通分支
Quasisimilarity of Operators and Components of Kato Essential Spectrum
【摘要】 设算子A和B拟相似,τ是Kato本质谱σ_K(B)的连通分支,本文研究τ∩σ_K(A)≠φ的充分条件和必要条件以及τ与σ_B(A)的某些子集的相交关系。
【Abstract】 Let A and B be quasisimilar operators and lat τ be a component of Kato essenial spectrum σK(B). In this article we study the sufficient conditions and necessary conditions for τ∩σK(A)≠φ, and discuss the properties of certain subsets of σB(A) concerning their intersection relations with τ. Also some results about the family of operators, (QQ)= {S∈B(H): for every T quasisimilar to S, every component of σK(T) intersects σK(B) and every component of σK(S) intersects σK(T)} are introduced, including the density in B(H) of (QQ)qt.
【关键词】 Hilbert空间;
有界线性算子;
拟相似;
Kato本质谱;
【Key words】 bounded linear operator; quasisimilarity; Kato essential spectrum;
【Key words】 bounded linear operator; quasisimilarity; Kato essential spectrum;
- 【文献出处】 福建师范大学学报(自然科学版) ,Journal of Fujian Normal University(Natural Science Edition) , 编辑部邮箱 ,1991年02期
- 【下载频次】5