节点文献
非线性微分差分方程奇摄动边值问题解的渐近估计
The Asymptotic Estimation of Solution of Singularly Perturbed Boundary Value Problem for Nonlinear Differential-Difference Equation
【摘要】 本文研究含小参数e>O的微分差分方程边值问题。在f(t,x,y,z,e),(t,e),Ψ(ε)适当光滑,fz(t,x,y,z,ε)≥m>0,f1(t,x,y,z,ε)≤0以及初值问题:0=f(t,x(t),x(t—τ),x'(t),0),x(t)|-τ≤t≤0=(t,0)于[-τ,1]上有解等假设条件下,我们证明了解的存在性,并给出了解的直到O(eN+1)阶的渐近估计。
【Abstract】 In this paper we study the boundary value problems for the differential-difference equations with a small ε>0 Under the conditions that f(t,x,y,z,ε),φ(t,ε),Ψ(ε) are properly smooth,fz(t,x,y,z,ε)≥m>0,f?(t,x,y,z,ε)≤0 and the initial value problem has a solution on [—τ, 1], we prove the existence of the solution, and give the asymptotic estimation of the solution, which corrects to O(εN+1).
【关键词】 微分差分方程;
奇摄动;
渐近估计;
【Key words】 differential difference equation; singular perturbation; asymptotic estimation.;
【Key words】 differential difference equation; singular perturbation; asymptotic estimation.;
【基金】 国家自然科学基金
- 【文献出处】 吉林大学自然科学学报 ,Journal of Jilin University , 编辑部邮箱 ,1989年04期
- 【被引频次】2
- 【下载频次】12