节点文献
关于Belousov-Zhabotinskii化学反应的行波解的注记(英文)
A NOTE ON TRAVELING WAVE SOLUTIONS FOR BELOUSOV-ZHABOTINSKII CHEMICAL REACTION
【摘要】 讨论了著名的Belousov-Zhabotinskii化学反应的一些数学模型的单调和非单调行波解的存在性。对波前解来说,证明了对一个简单模型找到的临界波速c0=(1-r)-2/1是最小波速。对于较为复杂一点的模型,应用Kozjakin VS和Krasnosel’skii M A得到的一个Hopf分歧定理,证明了周期行波解的存在性。
【Abstract】 The existence of monotone and nonmonotone traveling wave solutions for some simplified models of Belousov-Zhabotinskii chemical reaction is discussed . First-ly , the critical value of the wave speed found in a previous paper for a simplified model is proved to be the least wave speed . Secondly, using a Hopf bifurcation theorem developed by Kozjakin V S and Krasnosel’skii M A the existence of periodical traveling wave solutions for a more complicated model is proved .
【关键词】 扩散反应方程/波前解;
Hopf分歧定理;
【Key words】 diffusion raction equation/traveling wave front solutions; Hopf bifurcation theorem .;
【Key words】 diffusion raction equation/traveling wave front solutions; Hopf bifurcation theorem .;
【基金】 Research supported by the National Natural Scinece Foundation of China;the research grant from Beijing Institute of Technology
- 【文献出处】 北京理工大学学报 ,Journal of Beijing Institute of Technology , 编辑部邮箱 ,1989年04期
- 【被引频次】2
- 【下载频次】44