节点文献
富里算子及共轭变换的弱有界性
Weak Boundedness of Fourier Operators and Conjugate Transforms
【摘要】 <正> 熟知的,在富里分析中,设f(x)是2π周期可积函数(记作f∈L2π1或L1)。Sn(f,x)是f的富里级数(f)的部分和。存在绝对常数A(只与p有关的),使对任意,则这里‖·‖p表示Lp范数。这时我们说算子列Tn:f→Sn是一致(p,p)型的。也就是从Lp到Lp的有界算子,且算子范数列有界。但Tn不是一致
【Abstract】 Let Sn(dF, x) be the partial sums of the Fou ier-Stieltjes (dF) with F(x)∈ BV[ 0 . 2π].We prove that there exists an absolute constant A such that N1(Sn((dF, x)) A ||F||v, where N1 (g) = sup ames [x |g(x) >α].In particular N1 (Sn(f, x) )<A ||f||1 for f∈ L271 (which is called uniform weak boundedness of operators Sn).The same statement is asserted concerning Fourier Stieltjes single integralsWhere F(x) ∈ BV( -00 , oo),Those are based on weak boundedness of conjugate transforms(Hilbert-Stieltjes transform) .In conclusion, we point out that there exists no absolute constant A such that.
- 【文献出处】 数学研究与评论 ,Journal of Mathematical Research and Exposition , 编辑部邮箱 ,1987年02期
- 【下载频次】17