节点文献
(m)→(m)的等距算子与ε-等距算子的关系
The Relation Between Isometric and ε-Almost Isometric Operator of B(m,m)
【摘要】 <正> 定义 设E1,E2为Banach空间,U∈B(E1,E2)称为等距算子是指,对x∈E1有||Ux||=||x||;T属于B(E1,E2)称为ε-等距算子,是指存在0<ε<1,有(1-ε)||x||≤||Tx||≤(1+ε)||x||,x∈E1. 本文证明了对于(m)→(m)的ε-等距算子T,其中0<ε<1/3,及任意的ε1>0,均存在
【Abstract】 In this paper we show that, for every ε-almost isometric operator m) I where 0<ε<1/3),and arbitrary ε1 in (0,1/2(1/3-ε)), there exist an isometricoperator U(?)∈B(m,m) such that ||U(?) -T||≤3ε + 2ε1. Hence we give the problem which was risen in [1] an affirmative answer for spaces E = E1 =(m).
- 【文献出处】 数学进展 ,Advances In Mathematics , 编辑部邮箱 ,1987年03期
- 【被引频次】1
- 【下载频次】21