节点文献
具有有势平移不变迁移的广义简单排它过程
GENERALIZED SIMPLE EXCLUSION PROCESSES WITH POTENTIAL TRANSLATION INVARIANT PROBABILITY
【摘要】 <正> §1 引言自从Spitzer 1970年提出简单排它过程的概率模型以来,Liggett和Spitzer在七十年代初对它做了大量的工作。在迁移概率对称或平移不变或可逆正常返的条件下,他们基本解决了过程的遍历性。最近Arratia又研究了该过程中带有标记的质点的极限定理。作者在[10]
【Abstract】 Let S be a countable set. X={0, 1, …, m}s. P(=(p(x, y))x,y∈s) a transition probability matrix, g (·) is a strictly monotonically increasing function with g (0) = 0. We say that ({ηt}, Pη) is a generalized simple exclusion process if it is uniquely determined by the generator Ωf(η) =sum from u∈Bg(η(u))sum from v∈S P(u, v) [f(ηuv)—f(η)], f∈(X), η∈X. where (X) is the set of the all cylindrical functions on X; if η(u) =0 orη(v) =m or u=v then η(uv)=η, otherwise ηuv(u)=η(u)—1, ηuv(v)=η(v) +1, ηuv(w)=η(w), w{u, v}. When m=1, it is a simple exclusion process proposed and studied by Spitzer and Liggett. When ≥1 and P is positive recurrent and reversible, we obtained the ergodic theorem. In this paper we deal with the case of m≥1 and a potential random walk P. We obtain the description of all the translation invariant and invariant measures for the processes. A part of results of Liggett on simple exclusion processes is extended. Theorem. Let 3=Zd, P is a potential irreducible random walk on Zd. Then the set of all extreme points of the translation invariant and invariant measures for the process coincides with {Vp: O≤ρ≤∞}, where Vo and v∞ are the unit masses on 0(0∈X, 0(x)=0, x∈S) and M(M∈X, M(x)=m, x∈S) respectively; vo (0<ρ<∞)are product measures with marginal distributions vo(η(x)=k)=Pk/(g(k)g(k-1)…g(1))/sum from i=1 to m Pt(g(i)g(i-1)…g(1))+1 0≤k≤m, x∈S.
- 【文献出处】 应用概率统计 ,Chinese Journal of Applied Probability and Statistics , 编辑部邮箱 ,1986年04期
- 【被引频次】1
- 【下载频次】14