节点文献

Josephson结的动力学行为(Ⅰ)

DYNAMICAL BEHAVIOR OF RF-BIASED JOSEPHSON JUNCTIONS (Ⅰ)

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 汪子丹姚希贤

【Author】 WANG ZI-DAN YAO XI-XIAN (Department of Physics, Nanjing University)

【机构】 南京大学物理系南京大学物理系

【摘要】 本文对射频电流驱动下的包含干涉项电流的Josephson结方程进行了大量的数值研究工作。我们发现,对应于不同的参数范围,分别出现混沌行为、倍周期分岔序列、混沌带的反序列以及阵发混沌现象。我们也计算了2nP序列的收敛因子δn和功率谱中2k与2k+1分频的平均峰高之比Φ(k)/Φ(k+1)。另外,还研究了周期解的对称性以及它与通向混沌途径的关系。

【Abstract】 A lot of numerical investigation of equations of rf-biased Josephson junctions is carried out, in which the interference term is included in current-phase relation. Chaotic behavior, sequence of period-doubling bifurcations, inverse sequence of chaotic band and intermittent chaos are found seperately in various parameter regions. The convergent factor δ n of 2_nPsequence and the ratio Φ(k)/Φ(k+1) are calculated, where Φ(k) is the average height of the peaks corresponding to 2kP in the power spectrum. We also study the symmetry possessed by period solutions and its relation to the nature of approach to chaos

  • 【文献出处】 物理学报 ,Acta Physica Sinica , 编辑部邮箱 ,1985年09期
  • 【被引频次】1
  • 【下载频次】45
节点文献中: 

本文链接的文献网络图示:

本文的引文网络