节点文献
Bernstein型插值算子的逼近阶
THE ORDER OF APPROXIMATION BY BERNSTEIN TYPE OPERATORS
【摘要】 <正> 这样,自然要问对于f∈C2[-1,1],Bn(f,x)将有怎样的逼近阶?如果用第二类Chebyshev多项式的零点tkn作为结点,Bernstein型插值多项式又有怎样的逼近阶?本文对此给出回答,证得如下的
【Abstract】 In this paper we investigated the order of the approximation by Bernstein type operators. The main results arc the following theorems.Theorem 1 Let Bn(f,x) be the Bernstein operator[1] concerning a modification of the Lagrange’s formula If f∈C2 [-1,1] thenTheorem 2 Let Bn*(f,x) be the simplification of Bernstein operator[4]. If f∈C2[-1,1], thenTheorem 3 Let An(f,x) and An*(f,x) be the inlerpolations that were introduced by Varnw A. K[5]. n f∈C2[-1, 1] then
- 【文献出处】 高等学校计算数学学报 ,Numerical Mathematics A Journal of Chinese Universities , 编辑部邮箱 ,1985年03期
- 【被引频次】1
- 【下载频次】24