节点文献
循环码及Golay码纠突发错误能力的分析
Analysis on the Burst-Error Correcting Ability of Cyclic Codes and the Golay Code
【摘要】 本文用一个较简单的方法证明了二进制循环码纠突发错误能力b的下限为;b≥[(3d-5)/4]。用类似方法证明了(23,12)Golay码的b=5,并分析了它的扩张码(24,12)码能纠正三个随机错误同时纠正长度≤5的突发错误,及检测其它大量的错误图样,由此说明此码在实际差错控制系统中有着广泛的应用前途。
【Abstract】 In the first part of this paper, a lower bound on the burst-error correcting ability b≥[(3d-5)/ 4] is given for cyclic codes. Then we proved the (23,12) Golay code can correct burst errors of length 5 or less. Finally, we show that the(24,12) code can correct burst errors of length 5 or less and simultaneously correct three random errors and detect a great many other error patterns.
- 【文献出处】 通信学报 ,Journal of China Institute of Communications , 编辑部邮箱 ,1984年02期
- 【被引频次】8
- 【下载频次】138