节点文献
关于第二类Bernstein型插值过程
ON THE SECOND KIND OF INTERPOLATION PROCESSES OF BERNSTEIN TYPE
【摘要】 <正> 设f(x)∈c[-1,1],Un(x)=sin(n+1)θ/sinθ(x=cosθ)为第二类多项式,xk=cosθk=cos(kπ)/(n+1)(k=1,…,n)为其 n 个零点。又记 x0=1,xn+1=-1。文考虑了以{Xk}(k=0,1,…,n+1)为节点的第二类 Bernstein 型插值过程:
【Abstract】 Let L (f,x) be the Lagrange interpolation processes based on zeros of(1-x2) (sin(n+1)arc cos x)/((1-x2)1/2).We consider the extended interpolation processesof Bernstein typeHnk(f,x)=Hnk(f,θ)=((-1)k+1)/22k{Δ2t2kLn(f,θ)+(-1)k+122kLn(f,θ)}x=cosθ,t=π/(2(n+1)).In this note we prove the following theorems.Theorem 1.If f∈c[-1,1],thenHn1(f,x)-f(x)=O(1)[ω2(f,((1-x2)1/2)/n+1/n2)+ω(f,1/n2)],Where the “O” sing is independent on f and x.Theorem 2.Let f (x) be a real function defined on [-1,1] andg(θ)= f(cosθ),then(i)‖Hn1(f,x)-f(x)‖=0(1/n2)iff f=con st.(ii)‖Hn1(f,x)-f(x)‖=0(1/n2)iff g′∈LipI.Tehorem 3.Let f∈c[-1,1],then there exist constants 0<c1k<C2k<+∞ such thatC1kω2k(g,1/n)≤‖Hnk(f,x)-f(x)‖≤C2kω2k(g,1/n)for every positive integer k.
- 【文献出处】 数学杂志 ,Journal of Mathematics , 编辑部邮箱 ,1983年02期
- 【被引频次】1
- 【下载频次】19