节点文献
解Schrdinger方程的A.D.I.Galerkin方法及其敛速估计
AN A.D.I.GALERKIN METHOD AND THE ESTIMATION OF THE CONVERGENCE RATE FOR SCHRODINGER’S EQUATION
【摘要】 <正> 本文提出了解Schrodinger方程的A.D.I.Galerkin方法,证明了解这个方程的Galerin方法及A.D.I.Galerkin方法的收敛性和对初始值的绝对稳定性。 §1 Galerkin方法的收敛性 在分子化学和激光技术中遇到的Schrodinger方程的初边值问题是:
【Abstract】 was presented. In this paper we investigate an A. D. I. Crank-Nicolson-Galerkin Scheme for this equation. The error estimationis obtained, where k is the degree of interpolation polynomials UM,WM of UM and WM on each element (?)e.When bicubic B-spline interpolations are applied to this method for Schrodinger’s equation, we established the estimationThis result is better than the similar result [3] of the difference scheme. The number of unknowns is the same in both methods.
- 【文献出处】 高等学校计算数学学报 ,Numerical Mathematics A Journal of Chinese Universities , 编辑部邮箱 ,1983年03期
- 【被引频次】1
- 【下载频次】20