节点文献
关于单叶亚纯函数系数的Springer猜想
ON THE SPRINGER’S CONJECTURE OF THE COEFFICIENTS OF UNIVALENT MEROMORPHIC FUNCTIONS
【摘要】 <正> 我们把区域1<|z|<∞上的单叶函数 F(z)=z+sum from n=1 to(bn/zn)的全体记作Σ′.F(z)的逆函数记作G(w),它在∞领域的展式是 G(w)=w-sum from n=1 to (Bn/Wn).易知对任意的F(z)∈Σ′总有|B1|≤1.Springer证明|B3|≤1并且猜测Kubota证明(1)式当n=3,4,5时成立.Schober证明(1)式当n=6,7时成立.任
【Abstract】 Let ∑′ denote the family of univalent functionsF(z)=z+sum from n=1 to ∞ ((bn)/(zn)), in 1<|z|<∞. If G(w) is the inverse of a function F(z)∈∑′, the expansion of G(w) in some neighborhood of w=∞ isG(w)=w-sum from n=1 to ∞ ((Bn)/(wn)). It is well known that |B1|≤1 for any F(z)∈∑′. Springer proved that |B3|≤1 and conjectured that|B2n- 2|≤((2n-2)!)/(n!(n-1)!) (n=3, 4, …). (1), Kubota proved (1) for n=3, 4, 5. Schober proved (1) for n=6, 7. Ren Fuyao has verified (1) for n=6, 7, 8. In this article we are going to verify (1) for n=9.
- 【文献出处】 数学年刊A辑(中文版) ,Chinese Annals of Mathematics,series A , 编辑部邮箱 ,1982年01期
- 【被引频次】1
- 【下载频次】16