节点文献

细胞图象的自动识别─ 呼吸道(肺)细胞的计算机分析

Automatic Recognition of Cell Images── Computer Analysis of Respiratory Tract (Lung) Cells

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 汤之永杨存荣陈传涓赵宁秦永年周彬

【Author】 Tang Zhi-yong, Yang Cun-rong, ( Department of Automation, Tsinghua University ) Chen Chuan-juan, Zhao Ning, ( Biophysics institute of Academic Sinica) Qin Yong-nian, Zhou Bin, (Cancer Institute, Chinese Academy of Medical Sciences)

【机构】 清华大学自动化系中国科学院生物物理所中国医学院肿瘤研究所中国医学院肿瘤研究所

【摘要】 应用统计模式识别的方法对细胞图象进行计算机自动识别时,细胞特征的抽提与选用是重要的一环。我们在所建的细胞图象自动分析系统上对每个细胞抽提了不同性质的三组特征共 33个。即 20个综合性特征、 10个统计性直方图特征和 3个颜色特征。并对约200个呼吸道(肺)细胞中的重度不典型化生细胞和高分化鳞癌细胞进行自动分类。试验结果证明:综合选用三组特征比仅选用其中的一组或两组特征的效果好。正确识别率达80%左右。本文重点就三组特征的性质及其在细胞自动识别与分类中的作用作一初步的分析。

【Abstract】 Automatic recognition and classification utilizing statistical pattern recognition method for cell images can be performed by computers, and the feature extraction and selection are considered to be the key points of this method. For each cell, three different feature sets have been extracted by a cell image analysis system. Three feature sets were adopted, including 20 global features, 10 statistical histogram features and 3 color features. About 200 lung cells have been classified into two classes: marked atypical squamous metaplasia cells and well-differention squamous carcinoma cells. As a result of the classification, it has been proved that the result obtained by the utilization of all the three feature sets is rather better than that as the utilization of one or two of them, the number of cells which agree with the visual assignment can be obtained more than 80%. In this paper, the nature of the three feature sets and their effects on the classification results have been mainly analyzed.

  • 【文献出处】 清华大学学报(自然科学版) ,Journal of Tsinghua University(Science and Technology) , 编辑部邮箱 ,1982年03期
  • 【被引频次】4
  • 【下载频次】23
节点文献中: 

本文链接的文献网络图示:

本文的引文网络