节点文献

薄壳简单边界效应理论的二次渐近方程

THE SECOND-ORDER ASYMPTOTIC EQUATIONS FOR THE SIMPLE BOUNDARY EFFECT OF THE SHELLS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄克智蒋智翔郑思樑

【Author】 Hwang Kehchih Tsiang Chihhsiang Cheng Syliang (Tsing Hua University)

【机构】 清华大学清华大学

【摘要】 本文在与的简单边界效应初次近似理论(误差量级为21/h/λ)的基础上,建立了简单边界效应的二次近似理论;此理论具有量级为h/λ的误差,因此达到了与基于Kirchhoff假设的薄壳理论本身相同的精确度。文中指出,在讨论与本文同一问题的文献[4]中,由于“集度函数”W*的渐近级数[见本文式(1,3)]的第一项W*(0)近似地以其边界值W*(0)|α=α0代替,故所得到的简单边界效应“精确”方程是不完全的。本文中纠正了此一缺点,并采用更为简单的数学方法[即通过坐标变换将垂直于边界曲线方向的座标拉长,见式(1.6)],建立了完全的二次近似理论,同时还写出了全部位移与内力的渐近表达式。

【Abstract】 In this paper is presented a second-order approximation theory, for the simple boundary effect of thin shells, on the basis of the first-order approximation theory of Eabotnov [1] and Goldenveizer [2,3] which is accurate in order of magnitude to within h/∧1/2 only. The second-order approximation theory has the same degree of accuracy as the theory of thin shells itself, based on the Kirchhoff’s hypotheses. It is pointed out that the "more exact" equations in the work [4] dealing with the same problem are incomplete, in view of the fact that there the first term W*(0) in the asymptotic aeries for the "function of intensity" W*[see eq. (1.3) in this paper] was replaced by its value W*(0) | α=α0 on the boundary curve. By use of more simple method which consists of transformation [i.e. extension, see eq. (1.6)] of one of the coordinates α in the direction perpendicular to the boundary curve, the complete second-order asymptotic equations are obtained.

  • 【文献出处】 力学学报 ,Acta Mechanica Sinica , 编辑部邮箱 ,1981年06期
  • 【被引频次】9
  • 【下载频次】78
节点文献中: 

本文链接的文献网络图示:

本文的引文网络