节点文献
凝胶渗透色谱法峰加宽改正问题——Ⅱ.一种有效的解Tung方程的迭代法
ON THE PEAK SPREADING CORRECTION IN GPC Ⅱ. AN EFFECTIVE METHOD OF ITERATION FOR SOLVING TUNG’S EQUATION
【摘要】 本文运用一种病态线性方程组的迭代法解出 Tung方程。此法对定h及变h的 Gauss 核及 Gram-Charlier 核都是有效的,对窄分布样品的峰加宽改正也很适合。并与 Ishige 及 Smit等提出的迭代法作了比较。最后讨论了求积公式、归一化、对称化和GPC实验谱图的峰加宽改正问题。
【Abstract】 The method of iteration suggested by Han is applied for solving Tung’s equation. It is applicable to both constant and variable h’s Gaussian kernek as well as Gram-Charlier kernel. It can also be used for correcting peak spreading of narrow molecular weight distribution samples.This method of iteration is comparable to other iterative methods reported in literature as far as the calculating time and the accuracy and precision of solution are concerned.The problem of quadrature formula, normalization, symmetrization and peak spreading correction for experimental GPC chromatograms after partial smoothing or fitting a curve is discussed.
- 【文献出处】 高分子通讯 , 编辑部邮箱 ,1980年05期
- 【下载频次】19