节点文献
圆环上半纯的典型实照函数
FUNCTIONS TYPICALLY REAL AND MEROMORPHIC IN A CIRCULAR RING
【摘要】 <正> §1.引言1932年 Rogosinski 首先研究了单位圆 E:|z|<1内正则的典型实照函数,这种函数的全体成一函数族 Tr(E)假如 f(z)∈Tr(E),那末 f(z)=z+a2z2+…在|z|<1是正则的,且满足条件
【Abstract】 In the circular ring Rq:q<|z|<1 let the function f(z) be meromorphic andsatisfy the condition(?)The class of all such functions f(z)will be denoted by Tr(Rq).Let the poles pi of f(z)∈Tr(Rq)be arranged so that(?)Let the Laurent expansion for f(z)in the ring p′<|z|<P(P′=|p-1|,p=|p1|)be(?)then the bn’s are real numbers.Fixing p’ and p,denote the class of all such functionsf(z)by Tr(p′,p),q<p′<p<1.All the functions f(z) of Tr(Rq) such that they are regular onp=|P-1|<|z|<<1(q<|z|<|(p1)|=p) form a sub-class Tr(p′,1)(Tr(q,p)).The function(?)is schlicht and typically-real in Rq,where a is real with absolute value less than1/2(q+1/q).Theorem 1.If f(z)∈Tr(Rq),then the inequality(?)holds in Rq for any real a,(?)provided that(?)Theorem 2.(?)then for each z in Rq,(?)(z)≠O,there exists areal numbera=a(z),|a|<1/2(q+1/q),such that(?)Theorem 3.Under the conditions of Theorem 2,we have (?)where Lb is a curve with the extremities z=+q and z=-q,depending on the positiveparameter b (b<|Sq(z,a)|)and lying in the upper half or in the lower half of thering according as(?)respectively,such that Lb approaches a semi-circumference of |z|=q as b→O.Theorem4.Let the negative number-mj be the residue of f(z)at the polepj.Then(?)(i)if f(z)∈Tr(q,p),and b1-b-1=1,we have(?)Theorem 5.Let b0=0,then(?)when n is even;and(?)when n(>1)is odd,where(?)when n is even;and(?)when n(>1)is odd;(?) when n is even;(?)when n(>1)is odd.All the above estimates are precise.Theorem 6.Corresponding to a function f(z)of Tr(Rq)there exists a functiong(z)regular and typically real in Rq,such that(?)where the pj(j=O,±1,±2,...)are the poles of f(z)in Rq.From this result we can deduce an integral representation of f(z)∈Tr(Rq).
- 【文献出处】 数学学报 ,Acta Mathematica Sinica , 编辑部邮箱 ,1959年01期
- 【下载频次】16