节点文献

射影极小曲面的杜慕兰变换(Ⅴ)

ON DEMOULIN TRANSFORMS OF PROJECTIVE MINIMAL SURFACES(Ⅴ)

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 苏步青

【Author】 SU BUCHIN(Fuh-tan University and Academia Sinica)

【机构】 复旦大学及中国科学院数学研究所

【摘要】 <正> 在论文(Ⅲ)关于射影极小曲面 S 和其一杜慕兰变换(以下简称 D 变换)(?)的Gpdeaux 叙列

【Abstract】 The present paper is a sequel to a previous one in which we have consi-dered the two rectilinear congruences W associated with a projective minimalsurface S and one of its D-transforms(?).In the space S5 there are corres-ponding Laplace sequences (?)(W)and(?)If we construct the second image in S5 of the osculating linear complex of(W),that is,the pole P of the hyperplane(?)with respect tothe Klein hyperquadric Q,then the point P must belong to a Laplace sequence(?)(P)where every point is the transform of the preceding along the sense u.In asimilar way we obtain another Laplace sequence(?)where every point is the transform of the preceding along the same sense.It is shown that(P)and(P)can be obtained from the Godeaux sequences(?)(L)and(?)of S and(?)as intersections of joins,namely,(?)(n=1,2,…).The points(?)and(?)in 85 are the images of two sides of Demoulinquadrilateral of S which intersect each other at the corresponding point of(?).We denote by(?)and(?)the second focal sheets of the congruences(W)and(W),so that they are the second D-transforms of S.The Laplace sequence(W)corresponding to the pair(S,(?))is the second transform along the senseν of the Laplace sequence(W)corresponding to the pair((?),(?))and theLaplace sequence(?)corresponding to(S,(?))is similarly the second transformalong the sense u of the Laplace sequence(W)corresponding to((?)).Several remarkable relations between the sequences of Godeaux quadrics(?)and(?)of the surfaces S,(?)and(?)are obtained.For example,Φn and(?)touch at four points such that Φn and(?)alsotouch at two of them,and Φn and(?)at the remaining two points.

【关键词】 极小曲面列矩阵一侗超平面在凡子烈二莲回行四势西官
  • 【文献出处】 数学学报 ,Acta Mathematica Sinica , 编辑部邮箱 ,1958年02期
  • 【被引频次】1
  • 【下载频次】47
节点文献中: 

本文链接的文献网络图示:

本文的引文网络