节点文献
单位圆上的有界单叶函数
BOUNDED SCHLICHT FUNCTIONS IN THE UNIT CIRCLE
【摘要】 <正> 1.引言设函数在单位圆|z|<1上是正则的,单叶的.它映照|z|<于|w|<1中.这种fk(z)的全体形成一函数族 Bk,乃是 k 称的有界单叶函数族.对于 B1中的函数 f1(z),劳宝生讨论了|a|,|z0|<1,|f1(z0)|和|f′(z0)|四者之间的关系.利用关系式(?),他的许多结果可以直接推广到函数族Bk中来.但是关于fk(z),还有些应该直接研讨的问题.例如当|a|,|z|取定值或|a|,
【Abstract】 Let the functionbe regular and schlicht in the unit circle |z|<1 and in which let it besuch that |fk(z)|<1.The totality of all such function forms a class whichshall be denoted by Bk.For a function f1(z)of B-1 and a point z0 of |z|<1,R.M.Robinsonhas discussed the relations between the four quantities |α|,|z0|,|f1(z0)|and |f′1(z0)|.By means of the relation(?),some of Robinson’sresults can be extended to the class Bk.However,there are problems in theclass Bk(k>1)which are not allowable to solve them in this manner.Employ the method of parameter representation we obtain the following Theorem.Let fk(z)∈Bk and write(?),|α|=|f′k(0)|,r=|z|<1,then,corresponding to the three cases:1)(?)λ being the least positive root of the equation(?)2)(?)3)(?)we have respectively1)(?)with(?)2)(?)with(?)3)(?)with(?)The estimates 1). 2) and 3) are precise.
- 【文献出处】 数学学报 ,Acta Mathematica Sinica , 编辑部邮箱 ,1957年03期
- 【被引频次】1
- 【下载频次】27