节点文献
關於k進表示法的一個問题
A PROBLEM ON THE k-ADIC REPRESENTATION OF POSITIVE INTEGERS
【摘要】 <正> §1.設k>1是一個固定的正整數,則每一個正整數x都可以唯一地表成 x=a1kn1+a2kn2+…+a1knt,其中n1>n2>…>nt≥0都是整數;a1,…,at也都是正整數且≤k-1.我們令,並令.在k=2的情况,文[1]的作者們證明了
【Abstract】 Let k≥1 be a fixed integer, then any positive integer x can be uniquely represented by the following form x = a1 kn1 + a2 kn2 + … + a1 kn1, where n1> n2 > … > nt ≥ 0 are integers, and a1, …, at are also positive integers not greater than k-1. Define a(x)Theorem 1. For any k≥2, we have Moreover, the result is the best possible.Let m be a fixed integer, then the equation a(y)=m has infinite many solutions. Let Bm(x) be the number of solutions not greater than x, we haveTheorem 2.
- 【文献出处】 数学学报 ,Acta Mathematica Sinica , 编辑部邮箱 ,1955年04期
- 【被引频次】2
- 【下载频次】35