节点文献

基于旋转激励作动器的结构振动主动控制

Active Control of Structural Vibration Based on Rotating Actuator

【作者】 张宇

【导师】 张晓华; 李芦钰;

【作者基本信息】 大连理工大学 , 电气工程, 2019, 博士

【摘要】 在土木工程结构中恰当地安装主动质量阻尼器(Active Mass Damper,AMD)能有效抑制外载荷激励下的结构振动响应,减轻结构构件的破坏与损伤,在保证结构安全性的同时,降低结构建造成本。目前,AMD系统中的作动器主要包括液压作动器和伺服电机作动器(需机械传力装置),这两种作动器均存在一些难以克服的缺点,限制了AMD的广泛应用。受欠驱动机械系统领域中基于旋转激励的平移振荡器的启发,通过将“旋转激励”的概念引入到结构振动主动控制中来,提出了新型的旋转激励作动器,基于此,设计了一种新型的基于旋转激励作动器的AMD装置(Active Mass Damper with Rotating Actuator,R-AMD)。不同于传统直线AMD,R-AMD采用电力传动系统(旋转伺服电机)直接驱动惯性质量做旋转运动,能够克服传统AMD作动器存在的构造复杂、需机械传力部件传力、响应慢、行程受限等问题。为分析R-AMD装置对结构振动控制的有效性,将单自由度结构作为被控对象,考虑控制-结构的相互作用,建立了R-AMD/单自由度结构耦合系统数学模型,并给出了R-AMD装置两种不同的控制模式,即旋转控制模式与摆动控制模式。采用最大反馈线性化方法,通过计算并选取相对阶为三的虚拟输出函数,可将R-AMD/单自由度结构耦合系统数学模型转化为带有稳定内动态的三阶线性系统;同时,给出了基于最大反馈线性化的线性控制方案给系统参数带来的约束条件。针对线性控制方案中系统参数受限问题,为提高R-AMD控制系统的动态响应性能,采用θ-D逼近方法,实现了R-AMD控制系统的非线性最优控制器设计;其中,阐明了基于微分同胚坐标变换能有效解决“θ-D逼近方法对于欠驱动控制系统的适用性”的问题。考虑到土木工程结构在使用过程中存在参数不确定性(如设备安装、装修等因素影响结构质量、刚度),且会受到风、地震等外部载荷的作用,基于分层滑模变结构方法为R-AMD设计了非线性鲁棒控制器,以增强R-AMD控制系统对未建模动态及外部干扰的抑制能力。相关实物实验结果验证了所提控制方案的有效性。针对多自由度结构振动集中控制存在的控制器设计复杂、信息交换难度大等问题,提出了基于R-AMD的多自由度结构振动分散控制方案。该方案采用分散形式在结构多个位置布置R-AMD,将整个R-AMD/多自由度结构耦合系统拆解为多个分散子系统后进行控制器独立设计;并分别采用鲁棒抑制和神经网络辨识的方法来处理分散子系统的不确定关联项,给出了基于滑模控制算法的鲁棒分散控制方案和基于动态神经网络的自适应分散控制方案。实物实验结果表明,在抑制结构高阶振动方面分散控制方案较集中控制方案具有更好的性能。针对高层结构的双向风激振动控制问题,设计了单转子形式R-AMD系统并配置于高层结构顶层,为其设计了基于降阶模型的解耦滑模控制方案。为验证该方案的有效性,采用“76层风振控制基准结构”作为被控对象进行振动控制仿真实验,为降低滑模控制器的阶次,将基准结构在X、Y两个方向上均转化为等效单自由度模型。仿真实验表明,R-AMD控制系统可有效降低高层结构在X、Y两个方向上的位移响应和加速度响应,实现结构双向风激振动的同时抑制。本文针对现有直线AMD存在的构造复杂、响应慢、接触式传力及行程受限等问题,提出了基于旋转激励作动器的新型R-AMD系统,并对R-AMD在单自由度、多自由度、高层(风振)等不同结构振动控制中的应用进行了研究,给出了 R-AMD/结构耦合系统建模、参数辨识与控制系统设计方法,并通过数值仿真和实物实验验证了 R-AMD控制系统的有效性。新型R-AMD装置具有易集成、占用空间小、能耗低等优点,适用于大规模结构分散控制及对使用空间限制较高的场合;本文所提R-AMD装置及其非线性控制、分散控制方案对于土木工程结构振动主动控制问题具有一定的理论与应用价值。

【Abstract】 For civil engineering structures,installing active mass damper(AMD)is an effective method to reduce the dynamic responses of the structure and avoid structure damage under external excitations,which is helpful for achieving a reasonable balance between economy and safety.Recently,hydraulic cylinders and electrical servo motors with mechanical transmission devices are mostly used actuators in traditional active mass damper system.However,both devices are limited in application for their insurmountable disadvantages.The concept of rotating actuator is introduced into active structural vibration control,via drawing lessons from the translational oscillator with rotating actuator in the field of underactuated mechanical systems,and thus a new type of AMD device,the active mass damper with rotating actuator(R-AMD)is proposed.Electrical drive system(rotational servo motor)is adopted as actuator in the novel R-AMD,which can overcome the problems of complex structure,contact force transmission,slow response and limited stroke which exist in traditional AMD usually.In order to analyze the effectiveness of R-AMD in structural vibration suppression,a single degree of freedom(SDOF)structure is adopted as the control target on which the R-AMD is installed.Taking the control-structure-interaction effect into consideration,the modeling of R-AMD/SDOF structure coupled system is accomplished,based on which the two differentcontrol modes,rotational control mode and swing control mode are proposed.The mathematical model of R-AMD/SDOF structure can be transformed into a three-order linear system with a first-order stable inner dynamic using the maximal feedback linearization technique.Then,linear pole assignment control scheme is designed and its constraints on system parameters are proposed.To break the limitation of linear control scheme based on maximal feedback linearization and improve the performance of R-AMD control system,the nonlinear optimal controller is designed using the θ-D approximation technique to investigate the optimal performance of R-AMD in vibration mitigation,during which the important role of diffeomorphism transformation of coordinates in making θ-D approximation technique applicable to underactuated systems is addressed.Considering civil structures usually bear uncertainties in mass and stiffness(e.g.caused by equipment installation or decoration),and external loads,the hierarchical sliding mode control method based robust controller is designed to enhance the robustness of the R-AMD control system to structural modeling errors and external disturbances.Experiments are carried out on experimental setup to verify the effectiveness of proposed control schemes.To avoid the difficulties of designing high order controller,information transmission in the centralized control scheme for vibration control of multiple degree of freedom(MDOF)structure,decentralized control is designed by placing multiple R-AMDs on different parts of MDOF structure.The R-AMD/MDOF structure coupled system are divided into multiple subsystems with uncertain interconnected terms,of which controllers are designed independently.Sliding mode control based robust decentralized control scheme and dynamic neural network based adaptive decentralized control scheme are proposed,via dealing the uncertain interconnected terms of decentralized subsystems with robust suppressing and adaptive identification respectively.Experiment results show that decentralized control schemes have superior performance in suppressing high-order vibration than centralized control.To simultaneously suppress wind-induced vibration of high-rise buildings in two orthogonal directions,the single actuator type R-AMD is designed and installed on the top floor of high-rise building.A decoupled sliding mode controller is designed based on the reduced-order model of R-AMD/structure coupled system.To test the effectiveness of the proposed control scheme,the 76-story benchmark building is adopted as target structure.In order to reduce the difficulty of controller design,the original 76-story benchmark building is simplified as a SDOF model in X and Y direction respectively.Simulation results show that bidirectional wind responses(displacement and acceleration)of 76-story benchmark building can be simultaneously suppressed using R-AMD.To overcome the problems of complex structure,slow response,contact force transmission,and limited stroke which exist in traditional AMD,an innovative AMD system with rotating actuator is proposed,and its applications in vibration mitigation of different structures such as SDOF structure,MDOF structure and high-rise building(wind-induced vibration)are investigated,during which,approaches of system modeling,parameter identification and control system design are presented.Besides,numerical analyses and experiments are conducted to verify the effectiveness of the control schemes and the active control device.The novel R-AMD is featured with small occupying space and ease of integration,which make the R-AMD more potential in engineering applications,especially in decentralized control of large-scale structure and occasion where space is limited.The R-AMD device,and the proposed nonlinear control schemes and decentralized control schemes are of some value in theory and engineering application.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络