节点文献
舞台多电机同步控制系统传感器故障主动容错方法研究
Research on Active Fault Tolerant Control for Sensor Fault in Multi-motor Synchronous System of Stage
【作者】 毛海杰;
【导师】 李炜;
【作者基本信息】 兰州理工大学 , 控制理论与控制工程, 2018, 博士
【摘要】 随着我国科技文化事业的飞速发展,舞台机械控制系统的应用已越来越广泛。为实现特定的演艺效果,舞台机械系统在运行过程中具有不同设备切换频次高、动作复杂多变、时间节点要求准确等特点,这使得现代舞台机械控制系统在功能更加完备的同时,结构也变得更为庞杂,发生故障的几率在随之增加;加之演出过程“救场如救火”,无疑增加了舞台控制系统的高可靠性需求。为此,通过深入分析舞台控制系统的运行模式及影响其安全性的诸多因素,从最为常见的多电机同步控制入手,针对系统控制性能欠优及传感器故障问题,重点进行了以下几方面创新性的研究工作:1)基于自抗扰与偏差耦合的同步控制策略与参数优化针对舞台运行过程中负载扰动和非线性等不确定性对同步控制性能的影响,基于PMSM数学模型,在矢量控制方式下,首先设计了基于自抗扰控制(ADRC)的转速同步控制器,并结合偏差耦合的同步控制结构,提高了系统的同步性能;考虑到扩张状态观测器(ESO)在ADRC补偿控制中的重要作用,而非线性ESO因参数较多、整定复杂,使其工程应用受限的问题,采用线性ESO(LESO),在观测状态的同时,实现了对扰动及非线性不确定部分的估计;并基于频域法深入分析了参数选取对估计的收敛性、快速性及噪声抑制和鲁棒性等的影响趋势,进而得到了参数整定的依据,从而在矢量控制架构下,为设计性能优异的LESO,实现ADRC对PMSM更为有效的估计、补偿与控制提供了指导。2)基于LESO-SPRT传感器故障诊断与可靠性量化评价重构容错的集成方法针对舞台多电机同步控制系统中的传感器故障问题,考虑到现有转速估计方法的适用范围有限这一不足,基于无速度传感器矢量控制原理,采用LESO在电流环实现了对转速的全范围高精度估计;并将估计转速与实测转速进行比较,基于序贯概率比检验(SPRT)的残差分析实现故障诊断;在采用直接切换估计转速以实现对故障传感器的隔离和系统容错时,考虑基于SPRT诊断结果的直接切换所带来的抖震与可靠性不足问题,构建了以SPRT为内核的故障诊断可靠性量化评价因子,并进而设计了基于可靠因子的平滑重构策略,在降低切换动态的同时,提高了诊断的可靠性及容错实施的及时性。尤其是可靠因子的引入,使传感器故障诊断可靠性的量化评价与平滑重构容错的设计得以集成实现。3)基于多尺度形态学的传感器故障诊断与冗余信息重构的容错方法针对基于观测器设计的方法需要精确的数学模型,而随着系统复杂度的增加,建模变得越加困难的现状,采用多尺度形态学这一信号处理方法,通过对传感器故障模式的分析,实现了对传感器的故障检测,并借助于舞台系统中固有的转速与位移传感器信号之间的解析冗余关系,通过构造数值积分器和微分器实现了对故障传感器的隔离容错。在这一过程中,考虑现有微分器存在形式复杂、整定参数多、噪声抑制能力有限等问题,在深入分析综合控制函数特点的基础上,设计了基于双曲正切的改进型跟踪微分器,并从机理上证明了其收敛性。改进型微分器的引入,改善了微分效果,降低了整定参数个数,提高了系统容错性能。4)基于复杂网络的传感器故障诊断与修正加权均值反馈的容错方法针对舞台多电机同步控制中存在着丰富的硬件、结构与信息冗余,受复杂网络同步输出中耦合矩阵概念的启发,设计了基于距离的表征不同传感器测量数据输出一致性的相似度矩阵,通过对矩阵中相关元素及特征值的判断,实现了对故障传感器的检测、定位与估计;并依据故障诊断结果,通过设计改进的加权均值反馈机制,实现了对故障传感器的隔离和系统容错。相似度矩阵的巧妙构造,其元素构成体现了系统的结构特点,因而具有机理模型的特征;而相似度矩阵的生成又是由数据产生,因此该方法可谓是一种基于模型与数据驱动的有机融合,兼具了模型和数据的优点,对于复杂系统的故障诊断与容错设计具有参考价值。5)舞台4电机同步半实物实验平台的搭建及3类主动容错方法的实验研究为验证理论方法的有效性和工程适用性,结合已有的实验条件,搭建了与实际舞台控制模式及硬件体系相一致的模拟系统。该系统以“PLC+变频器+PMSM+编码反馈”为硬件,采用Matlab作为验证理论算法的软件,通过OPC技术实现Matlab与PLC及变频器之间的通讯,实现了“Matlab+舞台机械模拟系统”的4电机同步控制半实物实验平台;在此平台上对前述所取得的部分理论成果进行实验研究与验证,并得到了与仿真实验相一致的结论,从而进一步验证了所提方法的有效性与工程适用性。实验平台的搭建,在验证理论算法有效性的同时,从提高理论方法的工程应用效率角度,也为检验算法的工程适用性和使用价值、进而应用于工程实践,提供了一种更为实际有效的途径。
【Abstract】 With the rapid development of science,technology and culture in China,the application of stage machinery control systems has been more and more extensive.In order to achieve a specific performance effect,the stage machinery system has the characteristics of high switching frequency of different equipment,complex and changeable movements,and accurate time nodes in the operation process,which makes the modern stage machinery control system more complete in function,but also more complex in structure,and the probability of failure increases accordingly.In addition,the performance process of "resolve emergence situation on stage like fire fighting",undoubtedly increased the stage control system of high reliability requirements.To this end,through in-depth analysis of the operating mode of the stage control system and the factors affecting its safety,starting with the most common multi-motor synchronous control,aiming at the problem of poor control performance and sensor failure,the following innovative research work is focused on:1)Synchronous control strategy and parameter optimization based on active disturbance rejection control and deviation couplingAiming at the influence of load disturbance and nonlinear uncertainty on the performance of synchronous control during stage operation,based on the mathematical model of PMSM,the speed synchronization controller based on active disturbance rejection control(ADRC)in the vector control mode is designed.The synchronous control structure of the deviation coupling improves the synchronization performance of the system;Considering the important role of the extended state observer(ESO)in the ADRC compensation control,the nonlinear ESO has many parameters and complicated tuning,which makes its engineering application limited.For this point,linear ESO(LESO)is used to estimate the disturbance and nonlinear uncertainties while observing system state;With frequency domain method,the performance of convergence,fastness,noise suppression and robustness which decided by parameter selection are analyzed in detail,and the steps of parameter adjustment are determined.Under vector control architecture,the work mentioned above will supply guidance for the excellent performance of designed LESO and providing more effective estimation,compensation and control of ADRC.2)Sensor fault diagnosis and fault-tolerant integrated design based on LESO-SPRT and reliability quantitative evaluationAiming at the problem of sensor faults in the stage multi-motor synchronous control system,considering the limitation of the existing speed estimation methods,based on the principle of sensorless vector control,LESO is used to realize the full range and high precision estimation of speed in the current loop.With the estimated speed comparing with the measured speed,fault diagnosis is realized by residual analysis of sequential probabilityratio test(SPRT).When fault sensor isolation and system fault tolerance are realized by direct switching estimation of speed,chattering and insufficient reliability caused by direct switching of SPRT diagnosis results are considered.Fault diagnosis reliability based on SPRT kernel is constructed.The evaluation factor is quantified and a smooth reconfiguration strategy based on reliability factor is designed to eliminate the switching dynamics,improve the reliability of diagnosis and the timeliness of fault-tolerant implementation.Especially with the introduction of reliability factor,the quantitative evaluation of sensor fault diagnosis reliability and the design of smoothing reconstruction fault tolerance can be integrated.3)Sensor fault diagnosis and fault-tolerant design based on multi-scale morphology and redundant signal reconstructionThe method based on the observer design requires an accurate mathematical model,but the task becomes more difficult as the system becomes more complicated.So signal processing method of multi-scale morphological is adopted to detect sensor fault after analyzing failure mode.By means of the redundant information of the speed and displacement sensors obtained from the stage system,the tolerance of the fault sensor is realized by constructing numerical integrator and differentiator.In the process,considering the existing problems of differentiator such as complex forms,many tuning parameters and limited noise suppression ability,an improved tracking differentiator based on hyperbolic tangent function is designed after analyzing the characteristics of integrated control functions deeply.And its convergence is proved in mechanism.The introduction of the improved differentiator enhances the differential performance,reduces the number of tuning parameters,and improves the fault tolerant performance of the system.4)Sensor fault diagnosis and fault-tolerant design of modified weighted mean feedback based on complex networkMulti-motor synchronous control of the stage carries characteristic of rich hardware,redundancy structure and information.Inspired by the concept of coupling matrix in the synchronous output of complex networks,a distance-based similarity matrix which characterizes the consistency of measurement data of different sensors is designed.The tasks of detecting,positioning and estimating of the faulty sensors are realized by the correlation of the related elements and eigenvalues in the matrix.According to the fault diagnosis results,the isolation of faulty sensor and fault tolerance of system are realized by designing feedback mechanism with improved weighted mean.The similarity matrix is generated by the data,while it’s element composition reflects the structural characteristics of the system,which has the mechanism characteristics of the model.So the method can be considered combining model-based and data-driven method organically.It possesses the advantages of models and data,and provide reference value for fault diagnosis andfault-tolerant design of complex systems.5)Construction of stage 4 motor synchronization semi-physical experimental platform and experimental researches on 3 types of active fault tolerance methodsIn order to verify the validity of the theoretical method above,combined with the existing experimental conditions,the "PLC + Inverter + PMSM + encoder" is constructed in accordance with the actual stage engineering control mode.Communication among Matlab,PLC and converter are established with OPC and field-bus technology.Based on the Matlab verification algorithm,the 4 motor synchronous control semi-physical experimental platform,which takes actual motor as controlled object,is used to further experimentally testimony and also verify some of the theoretical results obtained above.Finally,the conclusion obtained from experiment is consistent with the simulation.The construction of the experimental platform,while verifying the validity of the theoretical algorithm,also provides an effective approach of testing engineering applicability and supplies a referential way for practice activity of engineer.