节点文献
炮控系统电动负载模拟器辨识与智能控制研究
Identification and Intelligent Control Research of Electric Load Simulator for Gun Control System
【作者】 王超;
【作者基本信息】 南京理工大学 , 机械工程, 2017, 博士
【摘要】 现代战争对火炮的机动性、快速性、可靠性和准确性均提出了较高的要求。炮控系统作为火炮的控制核心,配合现代化智能弹药,是实现“先敌开火,首发命中”的取要保证。由于在火炮调转和射击时炮控系统负载端受力复杂多变,产生的干扰力矩对炮控系统性能影响较大。电动负载模拟器能够实时模拟炮控系统负载端的载荷变化,在炮控系统研制总装前对其动态性能进行调试和考核,可有效地缩短炮控系统的研制和生产周期。由于电动负载模拟器自身存在复杂的非线性,传统控制方法难以保证较高的控制精度。因此,对电动负载模拟器数学模型辨识和控制策略进行深入研究,可进一步提高电动负载模拟器力矩电机的跟踪精度,具有重要的理论论意义和工程应用价值。本论文的主要研究工作集中在以下几个方面:(1)分析炮控系统电动负载模拟器的结构组成和工作原理,并采用矢量控制方法推理交流永磁同步电机的数学表达式;在研究该型电动负载模拟器的电流环、速度环、和位置环基础上,分别建立炮控系统电动负载模拟器力矩电机和位置电机的数学模型;研究讨论该系统中存在的不确定性因素,并深入分析其对系统性能的影响,为系统辨识、控制和半实物仿真的研究奠定了理论基础。(2)由于电动负载模拟器存在复杂的非线性因素,难以建立系统的精确数学模型,因此提出基于自适应差分进化的变结构小波神经网络的智能算法进行系统辨识。选取伪随机多幅值和线性调频信号作为辨识输入数据,结合文中提出的多种辨识算法,利用t检验对相关性能指标进行重要性评估,比较各种智能算法对系统辨识的精度,验证所提出辨识算法的有效性和实用性。此外,构建的精确辨识模型对电动负载模拟器控制器的研究提供了仿真平台,可有效评估相应控制器的有效性和实用性。(3)在模糊控制、滑模变结构控制、粒子群、小波神经网络等智能算法的基础上,综合考虑智能算法内在优点和电动负载模拟器自身特点,规避相关算法存在的缺点,分别提出了基于动态补偿模糊多分辨率的小波神经网络(DCFMWNN)控制器和基于双滑模面粒子群变结构的小波神经网络(2S-PSOWNN with SL)控制器,并在Lyapunov稳定意义下分别分析所提出控制器的稳定性。最后通过收敛分析、阶跃响应、正弦跟踪等仿真与试验,表明两种控制器均能够满足系统辨识指标要求。(4)介绍炮控系统电动负载模拟器的硬件组成和软件设计,搭建炮控系统电动负载模拟器半实物仿真试验平台。并将上文提出的DCFMWNN和2S-PSOWNN with SL控制器,分别应用在电动负载模拟器的多余力矩抑制能力、变梯度加载试验和鲁棒性能试验中。试验结果表明两种控制器均能满足系统的性能指标要求,且2S-PSOWNN with SL控制器较DCFMWNN控制器拥有较高的控制精度和较强的鲁棒性。结合上述提出的电动负载模拟器对炮控系统位置电机进行阶跃调转、等速跟踪和等效正弦测试,试验结果均满足该型炮控系统性能指标要求,对实际工程应用有较好的指导和参考作用。
【Abstract】 In the modern warfare,there is a higher requirement for artilleries to take advantages of the maneuverability,rapidity,reliability and accuracy performance.The gun control system(GCS)with modern ammunition works as a core of the artillery,which plays a vital role in realizing the "First shoot,first hit".As the torque in the load side of the GCS is always changing when the artillery is istransferring or shooting,the disturbance torque palys negative effects in the GCS performance.The electric load simulator(ELS)can simulate the complex and time-variable torque of the load side of the GCS dynamically,and the GCS performance can be debugged and evaluated before the overall system is established.Moreover,the development and production cycle of the GCS can be reduced effectively.However,common control methods can’t achieve great performance because of the complex nonlinearities existing in the ELS.Therefore,the model identification and control strategies are further studied to improve the torque tracking precision of the ELS,which also shows theoretical significance and engineering application values.The main research work of this dissertation focuses on the following aspects:(1)The structure feature and working principle of the ELS for the GCS are analyzed,and the mathematical expression of permanent magnet synchronous motor(PMSM)is established based on the vector control method.With studying the current loop,speed loop and position loop of the ELS for the GCS,the model of the position and torque motor of the ELS for the GCS is set up respectively.The existing uncertainty factors and negative effects are discussed,which can lay the theoretical foundation for the identification,control and semi-physical simulation.(2)Owing to complex nonlinearities,the exact model of the ELS can’t be achieved.Thus,an identification method named as adaptive differential evolution wavelet neural network with variable structure(ADE-VSWNN)is proposed.Pseudo random multilevel and chrip signals are chosen as identification inputs,and the t-test is used to evaluate the significance of relevant performance indicators and identification precision,which proves the effectiveness and practicability of the proposed identification algorithm.In addition,the established model can be used as the simulation platform,which evaluates the effectiveness and application of relevant controllers.(3)On the basis of the fuzzy,sliding mode variable structure,particle swarm optimization(PSO)and WNN intelligent algorithm,the intrinsic advantages of proposed algorithms and ELS characteristics are taken into consideration comprehensively,which contribute the construction of the fuzzy multiresolution WNN with dynamic compensation(DCFMWNN)controller and double sliding modes structure learning of PSO WNN(2S-PSOWNN with SL)controller,and the stability of proposed controllers is analyzed in the sense of Lyapunov stability.Finally,simulation results of the convergence,step response and sinusoidal tracking show that the proposed controllers can satisfy the system controller index requirements.(4)The hardware component and software design of the ELS are introduced,and the semi-physical simulation platform is established.Then,the proposed DCFMWNN and 2S-PSOWNN with SL controllers are applied to the test of suppressing the surplus torque,variable gradient loading and robust performance.Experimental results indicate that two controllers can satisfy the requirement of the system performance index,and the 2S-PSOWNN with SL controller shows better than the DCFMWNN controller in the control precision and robustness.The position motor of the GCS is also made work in the step response,constant speed and sinusoidal tracking when the torque motor of the ELS is working in different motion styles,which meets the control index requirement and provides the function of guidance and reference for the practical engineering application.