节点文献

基于复合振动的粘着控制微操作技术及其实验研究

Research on Micromanipulation Technology and Experiment Based on Adhesion Control of Compound Vibration

【作者】 陈涛

【导师】 孙立宁;

【作者基本信息】 哈尔滨工业大学 , 机械电子, 2010, 博士

【摘要】 借助于微操作技术,人们可以随意加工和组装出三维MEMS(Micro Electro Mechanical Systems)元件、操作微小生物对象或是移动微机器人系统,从而完成相应的实践活动。随着微操作技术应用广泛涉及到微系统制造、显微医疗、生物医学、光学调整等重要领域,操作对象的特征尺寸的也在不断减小,所造成的尺度效应对微操作方法和微器件设计、制作提出了新的挑战和要求。微作业工具做为微操作的重要部件,是连接微观系统和宏观系统的关键环节。MEMS技术以微机械系统为研究对象,可以用它实现极其微细的操作。其快速发展促进了自动化技术、微小型机器人技术等在微观世界内的发展,给予了面向微操作作业的微小型机器人全方位的发展空间。在国家杰出青年科学基金项目“微纳尺度粘着机理、操作与控制的理论与方法”(项目编号50725518)和国家自然科学基金项目“基于动态粘着控制的微尺度对象操作机理及方法的研究”(项目编号50805040)资助和全面分析国内外基于微操作方法和工具研究现状的基础上,本文针对微操作的发展趋势和微尺度操作的粘着问题,提出了一种基于粘着控制的动态微操作方法,并结合MEMS技术,研制出集结构、驱动和力检测于一体的硅基微型夹持工具用于实验研究。本文分别对微尺度操作机理及粘着控制、集成式MEMS微夹持器结构设计及实现方法、基于复合振动的微操作控制策略以及操作实验等方面进行深入的研究探讨。在微尺度操作机理及粘着控制方面,建立典型微操作模型,研究微观粘着力的产生、计算和控制方法;分析拾取和释放过程中微观粘着力的变化规律,建立微操作过程中粘着变化模型。在粘着模型基础上,结合夹持方式的优势,提出复合振动的操作控制方法。研究振动频率、操作加速度等动态参数与操作对象惯性力、粘着力之间的关系。建立操作加速度、粘着力之间的关系,得出微操作拾取和释放条件下操作工具加速度动态指标与操作效果的最佳匹配关系,解决微尺度对象释放后的精确定位的问题。在集成式MEMS微夹持器结构设计、关键工艺分析及实现方法方面,基于微操作工具结构、驱动和检测一体化设计理念,设计了集成式微夹持器。通过分析静电梳齿驱动器致动机理,对微夹持器的驱动部分进行设计。利用材料力学原理,建立倾斜式“n”型柔性支撑梁的刚度模型并对驱动稳定区域进行建模分析,增加微操作工具的动态稳定性;将有限元法用于微夹持器关键部件的结构分析,通过理论建模分析和仿真方法相结合,确定微夹持器的放大机构和检测梁的参数尺寸;同时将基于侧壁压阻式的力传感器集成到微夹持臂上,实现闭环力反馈。在工艺和实现方法方面,结合硅微机械加工技术,制定出一套加工集成式微夹持器的加工工艺流程,通过反应离子深刻蚀(DRIE)切割成型技术和离子注入技术相结合,成功地把基于压阻效应的力传感器集成到微夹持器中。在复合振动微操作控制策略以及操作实验方面,首先针对静电致动器的特性对微夹持器的驱动电源进行设计研究;并结合微操作中的特殊要求,对振动驱动电路和力检测电路进行了设计。利用压电陶瓷微动平台实现复合振动的操作控制,配合微夹持器的振动完成有效拾取和精确释放。通过对微夹持器系统动态模型和控制策略的分析得出微操作拾取和释放控制方法。最后建立基于粘着控制的微操作实验系统。首先对微夹持器进行性能测试,对部分微夹持器进行了疏水剂的封闭处理,为对比实验做准备。针对微尺度对象作业,进行了不同环境和条件下,不同体积的微靶球典型样品的稳定拾取、有效释放和精确定位的实验研究;并对微操作中的影响因素进行了总结,结合微球操作实验,对微操作中主动避免微观力干扰的必要性进行了分析和实验,为微操作系统的设计和微操作方法提供了可以借鉴的理论与实践经验。

【Abstract】 With micromanipulation techniques, three-dimensional MEMS devices, operating small biological objects or a mobile microrobot system can be processed and assembled by people easily to complete the appropriate practical activities. With the wide range of applications involving micromanipulation techniques to the microsystem manufacturer, micromedical, biomedical, optical and other important areas, and the characteristics size of the object are also constantly reducing. Then the scale effect caused by the size presents new challenges and demands to the microoperation methods and microdevice design. To connect micro- and macrosystem, the micromanipulation tools are key components. MEMS technology researches micromechanical systems, and can achieve very fine operations. With the rapid development of MEMS, automation technology, microrobot technology achieves corresponding development within the micro world and all-round development of microrobot for the microoperation is given.Sponsored by the National Science Fund for Distinguished Young Scholars—“Adhesion mechanism, operation and control theory and method of micro-nano-scale (project number - 50725518)”and the National Natural Science Foundation—“Research on the Mechanism and method of operation of micro-scale objects based on dynamic adhesion control (project number - 50805040)”, the dissertation takes comprehensive analysis of domestic and international methods and tools based on micro-operations. Aimed at the microoperations trends and the adhesion problems in micro-scale operation, a micromanipulation method based on dynamic adhesion control is presented. Combined with MEMS technology, the driving, mechanism, measuring integrated micro manipulating tool is developed subsequently for the experimental studies. In this dissertation, an in-depth study is conducted on the aspects of operation mechanism of micro-scale and dynamic adhesion control, integrated MEMS microgripper structure design, the key process analysis and implementation method, and vibration microoperations based on compound control strategy and operating experiments.Aim at the micro-scale object manipulating and dynamic adhesion mechanism the dissertation firstly establishes dynamic adhesive contact model, and investigates generation, calculation and control methods of adhesive. Variation of micro-adhesion in the pickup and release process is analyzed. The dynamic adhesion model for the micromanipulation is established through simulation and calculation method. Based on the dynamic adhesion model, the advantages of gripping is combined to propose the compound vibration method for the micromanipulation. The relationship among vibration frequency, vibration acceleration and inertial force, adhesion force are investigated. The dissertation researches the relationship of vibration acceleration and the adhesive force. And the optimum matching relation of the vibration acceleration in the pickup and release manipulation is obtained for the dynamic adhesion control, on this basis, the precision positioning problem of released micro-scale object is analysed.In the aspects of integrated MEMS microgripper structure design, the key process analysis and implementation methods, an integrated micro-gripper is designed based on micro-structure, driving and test integrated design concept. Through the analysis of electrostatic comb drive theory, the driving part of microgripper is designed. Using the elasticity theory, the stiffness model of tilting "n" type flexible support beam is established. And the stable region is analyzed to increase the dynamic stability of microgripper. The Finite Element Analysis is used to design the key components of the structure. The amplification mechanism and the parameters of testing beam are determined through the theory of modeling and simulation method. To achieve closed-loop force feedback, the force sensors are integrated in the arms of microgripper based on the technology of sidewall piezoresistance. In order to fabricate the designed integrated microgripper, a set of process flows are brought forward and a series of important process experiments are carried out to optimize the process parameters and the process flows. A sidewall surface piezoresistive technique is proposed and Deep Reactive Ion Etching (DRIE) and ion implantation are depicted. With this process, the piezoresistor is located at the vertical sidewall surface of the testing beam to improve the sensitivity and displacement resolution of the displacement sensor.In the aspects of compound vibration microoperations strategy and operating experiments, the drive power of microgripper is studied aimed to the characteristics of electrostatic actuators. Taking into account the special requirements of microoperations, the vibration driver circuit and power detection circuit are designed. The compound vibration in the micromanipuliton is achieved by combined the microstage of piezoelectric ceramic with the vibration of microgripper. The pickup and release methods are presented through the microgripper system dynamic model and control strategy analysis.Finally the experiments system is established based on dynamic adhesion control. Firstly, the performance testing is carried out and the self-assembled modification process of hydrophobic adsorbent on the microgripper is used. Aimed to the microscale manipulation, the studies of steady pickup, effective release and accurate position are experimented with different environments and conditions, different sizes of microsamples. Contrasting the analysis and simulation results, the theory is improved further based on the experiments. Through the summary of the factors in the micromanipulation, the initiative on microoperation to avoid microscale force interference is analyzed and experimented. With the experiments, the theory and practice experience are provided for the design of micromanipulation system and the micromanipulation approach.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络