节点文献
介孔材料内反应平衡的分子模拟及天然气CH4/CO2体系分离的实验和模型化
Adsorption and Chemical Equilibria on Porous Materials by Molecular Simulation and Separation of CH4/CO2 by Experiment and Modeling
【作者】 彭璇;
【作者基本信息】 北京化工大学 , 化学工程, 2005, 博士
【摘要】 本论文由两个相对独立的部分,即介孔材料内复杂体系的化学反应平衡和活性碳微球(a-MCMBs)上二氧化碳与甲烷的吸附分离组成。 在第一部分,本文利用反应蒙特卡罗方法(Reactive Canonical ensemble MonteCarlo,RCMC)方法研究了介孔材料内的化学反应平衡,以加深对纳米级限制条件下化学平衡的理解。 活性碳微球(a-MCMBs)是一种非常有前景的甲烷吸附存储材料。所以,在第二部分,本文采用‘实验表征——状态方程理论分析——分子模拟技术’等多种研究手段相结合的方法,研究了a-MCMBs上二氧化碳与甲烷的吸附分离,为吸附剂的开发和新材料的设计提供了有价值的理论依据。全文的主要内容和创新点如下: 针对在多相催化、吸附分离领域得到广泛应用的MCM-41和层柱孔这两种介孔材料,本文采用RCMC方法模拟了其孔内氨合成反应的化学平衡。模拟发现, (1)由于限制效应的存在,孔相通常比与之平衡的主体相的密度要大。根据LeChatelier原理,对于总摩尔数减少的氨合成反应,密度的增加会导致反应产量的增加。因而,两种孔内的氨平衡摩尔分率均比主体相中的高。 (2)对层柱材料与狭缝孔的结构差异进行了分析,解释了1.70nm孔宽的层柱材料内的氨产量要比1.50nm的狭缝孔大的异常现象。 (3)在低温573K、小孔径(对于MCM-41为1.5nm)和小孔宽(对于层柱孔为1.02nm)、高压600bar、高N∶H进料摩尔比4.12(0.3333)的条件下操作,可以获得较高的孔内氨平衡转化率。然而,只有在低压100bar下操作才能使孔内氨产量的增加更为有效。 采用RCMC方法对狭缝孔中水煤气变换和甲烷蒸汽重整的反应平衡分别进行了模拟计算。鉴于孔内这些化学反应平衡试验数据的缺乏,本文提出了一个预测
【Abstract】 This thesis contains two relatively independent parts, i.e. chemical equilibria of complicated systems confined in porous materials and adsorption separation of methane and carbon dioxide on activated mesocarbon microbeads (a-MCMBs).In part one, the chemical equilibria of three important reactions in porous materials were simulated by Reactive Canonical ensemble Monte Carlo (RCMC) method, to understand chemical equilibrium in nano-scale confinement.a-MCMBs is a promising adsorbent for methane storage. Accordingly, in part two, the combine method ’experiment characterization-equation of state (EOS) theory analysis-molecular simulation technology’ was used to study adsorption separation of carbon dioxide and methane on a-MCMBs. The investigation provides valuable guidance and points of reference for the development of new absorbents and new adsorption materials. The main contents and findings are summarized as follows.Aimed at two important meso-porous materials of MCM-41 and pillared clays in catalytic filed, RCMC simulation was firstly performed to study the chemical equilibrium of ammonia synthesis confined in these media. The simulation results demonstrate that,(1) It is usually acknowledged that the molecular number density of pore phase is higher than that of bulk phase for the reason of confinement. According to Le Chatelizer principle, the increase of density of fluid would result in a corresponding increase of ammonia production in pore phase, for ammonia synthesis which has a decrease of mole number after reaction.(2) By analyzing the structural discrepancy between pillared clays and slit pores, the exceptional phenomenon that why a pillared clay with a larger pore width of 1.70 nm has a greater ammonia mole fraction in pore phase than that of a slit pore with 1.50 nm is explained satisfactorily.(3) On the conditions of low temperature of 573 K, small pore size (1.5 nm for MCM-41 and 1.02 nm for pillared clays), high pressure of 600 bar and high feed mole ratio of N:H of 4:12 (0.3333), greater ammonia mole fraction in pore phase can be obtained, whereas only at low pressure of 100 bar can achieve a more
【Key words】 chemical equilibria; adsorption; experiment; equation of state theory; Molecular Simulation; constant pressure Gibbs ensemble; MCM-41; pillared layered materials; slit pores; ammonia synthesis; water gas shift; methane steam reforming; activated mesocarbon microbead; methane; carbon dioxide; separation;