节点文献
α-羰基二硫缩烯酮作为无气味的代硫醇试剂在有机合成中的应用
Applications of α-Oxo Ketene Dithioacetals as Odorless Thiol Equivalents in Organic Synthesis
【作者】 于海丰;
【导师】 刘群;
【作者基本信息】 东北师范大学 , 有机化学, 2006, 博士
【摘要】 众所周知,硫醇是重要的有机合成试剂,在有机合成中有广泛的应用。然而,通常使用的一些硫醇,如甲硫醇、乙硫醇和苄硫醇等不但有毒、还具有恶臭气味,对环境造成污染,危害人类的健康。本论文以发展绿色化学为目的,系统地研究了经济易得、无气味、稳定的α-羰基二硫缩烯酮作硫醇替代试剂在有机合成中的应用。在温和的条件下,成功实现了α-羰基二硫缩烯酮作为无气味代硫醇试剂的缩硫醛/酮化反应、硫杂-Michael加成反应、与环氧化合物的加成反应及与卤代化合物的亲核取代反应等。如上反应进一步拓展了α-羰基二硫缩烯酮在有机合成中的应用,同时从源头上避免了有毒、有臭味的硫醇的使用,对保护环境和人类的健康具有重要意义。 1.在乙酰氯.甲醇体系中,首先,成功进行了3-(1,3-二噻-2-亚基)-2,4-戊二酮1a和1-(1,3-二噻-2-亚基)丙酮4a作为1,3-丙二硫醇替代试剂的缩硫醛/酮化反应。实验结果表明,化合物4a的反应活性明显高于化合物1a,因此我们确定4a作为1,3-丙二硫醇的最佳替代试剂。然后,又进行了4a的类似物1-(1,3-二硫戊环-2-亚基)丙酮4b、4,4-(二乙硫基/二苄硫)-3-烯2-丁酮4c、4d分别作1,2-乙二硫醇、乙硫醇和苄硫醇的替代试剂的缩硫醛/酮化反应,反应效果都很好。 2.在常温条件下,分别研究了乙酰氯-甲醇体系中的化合物4和氢氧化钠-乙醇体系中的无气味的2-(二烷硫基)亚甲基-3-羰基-N-邻甲苯基丁酰胺8作硫醇替代试剂的硫杂-Michael加成反应。在各自的体系中,4和8都能与α,β-不饱和羰基化合物进行共轭加成反应,高产率获得相应的β-羰基硫化物。另外,反应中制备8的原料3-羰基-N-邻甲苯基丁酰胺7能被高收率回收,重新循环使用。 3.在常温条件下,氢氧化钠-乙醇体系中,8作为硫醇替代试剂能与环氧化合物发生加成反应,高产率获得相应的硫化物。实验结果表明,与非对称的环氧乙烷类化合物,如2-苯基环氧乙烷和环氧丙烷反应时,有高度的区域选择性,硫醇负离子主要进攻位阻小的碳原子;而与查耳酮的氧化物反应时,加成后发生反羟醛缩合反应,生成β-羰基硫化物。在上述条件下,也成功实现了8与对碱敏感的溴代苯乙酮和卤代烷烃的亲核取代反应。在每个反应中,制备8的原料3-羰基-N-邻甲苯基丁酰胺7能被高收率回收。 所有上述反应,过程简单,而且无气味。这是因为在反应中1、4和8是缓慢释放硫醇,释放出的硫醇能迅速与羰基化合物、α,β-不饱和羰基化合物、环氧乙烷类化合物和卤代烷反应而被消耗掉。
【Abstract】 It is well-known that thiols are kind of versatile reagent and have been widely utilized in organic synthesis. However, commonly used thiols, such as methanethiol, ethanethiol and benzyl mercaptan, having toxicity and a foul smell, can lead to environmental and safety problems. To develop green chemistry, we study systematically the application of commercially available, odorless and stable α-oxo ketene dithioacetals substituting for thiols in organic synthesis. As nonthiolic odorless thiol equivalents, their thioacetalization reaction, thia-Michael addition and the nucleophilic substitution reaction were carried out successfully under mild reaction conditions, which indicated that the application of a-oxo ketene dithioacetals in organic synthesis had been further developed, and which is propitious to environment and human due to escaping the use of toxic and foul smell thiols.1. Firstly, thioacetalization reaction of 3-(1, 3-dithian-2-ylidene)-pentane-2, 4- dione la and 1-(1, 3-dithian-2-ylidene) propan-2-one 4a as equivalent of propane-1, 3-dithiol had been succefully carried out in MeCOCl-MeOH. Compound 4a was chosen as optimal equivelent of propane-1, 3-dithiol on the basis of the reaction activity in thioacetalization reaction. Then the analogs of 4a: 1-(1, 3-dithiolan-2-ylidene) propan-2-one 4b, 4,4-bis (ethylthio/benzylthio) but-3-en-2-one 4c and 4d were investigated as equivalents of ethane-1, 2-dithiol, ethanethiol and benzyl mercaptan in thioacetalization reaction, respectively, and the thioacetalization products were obtained in high yield.2. 4 in MeCOCl-MeOH and 2-[bis(alkylthio)menthylene]-3-oxo-vV-o-tolylbutan amide 8a-e as odorless thiol equivalents in NaOH-EtOH had been studied in thia-Michael addition reaction at room temperature, respectively. 4 and 8 underwent facile conjugate addition to a, (3-unsaturated carbonyl compounds affording corresponding P-keto sulfides in very high yield in respective reaction system. Meanwhile, 3-oxo-iV-o-tolylbutanamide 7, the precursor of compounds 8, could be recovered from thia-Michael addition reaction in good yield.3. 8 reacted with a series of epoxides to afford corresponding sulfides at room temperature in NaOH-EtOH. The experimental results revealed that the addition reaction between 8 and asymmetrical oxiranes, for example 2-phenyloxirane and 2-methyloxirane, proceeded in a highly regioselective manner, and thiolate anoins generated preferred to attack on the less-hindered carbon of the epoxides. However, when reacting with calchone oxide, only 2-(alkylthiol)-l-phenylethanones deriving from the retroaldol reaction were isolated in high yield. In addition, the nucleophilic substitution reactions of 8 as thiol equivalents with 2-bromo-1-arylethanones, which are sensitive to alkali, and alkylogens were successfully carried out under above conditions. Moreover, 3-oxo-iV-o-tolylbutanamide 7, the precursor of compounds 8, could be recovered from these reactions in good yield, too.