节点文献
超声波轴承悬浮与减摩作用机理及基础实验研究
Mechanism of Acoustic Levitation and Reducing Fraction Analysis and Basic Experimental Study on the Ultrasonic Bearing
【作者】 常颖;
【作者基本信息】 吉林大学 , 机械制造及其自动化, 2005, 博士
【摘要】 轴承是机械设备中的重要零部件,其功用是支撑轴及轴上零件并传递运动和动力。轴承性能优劣直接影响着整个轴系的旋转精度及整部机器的性能。随着现代制造技术的飞速发展,对轴承的性能要求也越来越高。本文在深入研究压电学、超声学、摩擦学及机械设计学理论并对现有各种轴承性能进行分析基础上,首次提出超声波轴承的概念,此项新技术已经申请国家新技术发明专利。本文从超声振动悬浮与减摩的基础理论出发,阐述了超声振动悬浮及减摩的机理和以超声振动构造轴承的悬浮支撑的可行性。对形成超声振动悬浮与减摩的关键部件——压电换能器的性能进行了大量的理论分析和实验研究。对换能器的基本振动参数如换能器阻抗,谐振频率等进行测试;通过有限元法分析了换能器的振动模态,选择适合超声振动悬浮与减摩的换能器及振动模态并对换能器进行阻抗匹配计算和试验,最大限度发挥超声换能器的超声功率。自行研制了超声波轴承用压电换能器。测试了超声振动状态下换能器辐射端面与被悬浮零件之间悬浮间隙、悬浮间隙与载荷之间的关系以及与其他构件形成摩擦副时的摩擦系数;总结了影响超声振动悬浮与减摩的因素。在此基础上设计制作了超声波推力轴承,并对所设计超声波推力轴承基本性能进行了实验研究;提出了超声波径向轴承的基本设想。结果表明,超声波轴承有良好的减摩性能和悬浮性能,在工况相同的条件下,其减摩性能优于非液体摩擦滑动轴承和滚动轴承。可见,超声波轴承有着很好的应用前景。
【Abstract】 Bearing is the key component in the mechanical equipment. The function of bearing is to support the shaft and parts on the shaft and transfer movement and power. The rotating precision of shafting and performance of whole machine are affected by the bearing. With the development of modern manufacturing technology, the non-contacted and high rotating bearing is becoming a new study field. This paper presented a new idea, ultrasonic bearing, and carries out its relative theory and experiment study according to the ultrasonic, vibration and friction theories. The dissertation consists of several parts, the details as follows: (1) Based on the study of domestic and oversea scholars, the necessary condition of producing acoustic levitation is analyzed further and the relative theories of piezoelectricity , the ultrasonic and vibration are studied. It describes the mechanism of ultrasonic vibration for reducing friction and acoustic levitation and the feasibility of constructing acoustic levitation support of bearing by ultrasonic vibration. The performance of key components forming ultrasonic reducing friction acoustic Levitation, piezoelectric ceramic actuator, is analyzed largely in theory and test. Build the vibration equation of piezoelectric ceramic actuator and determine the size of piezoelectric ceramic actuator by boundary conditions. Design and fabricate the piezoelectric ceramic actuator and test the basic vibration parameters, such as the impedances of the actuator and resonance frequency. Analyze the vibration mode of the actuator by FEM and make the actuator