节点文献

基于分子数据与形态特征的茧蜂科系统发育学研究

A Study on Phylogenetic Relationships among Braconidae (Hymenoptera: Ichneumonoidea) Based on Molecular Data and Morphological Characters

【作者】 时敏

【导师】 陈学新;

【作者基本信息】 浙江大学 , 农业昆虫与害虫防治, 2005, 博士

【摘要】 本文对茧蜂科Braconidae的亚科级分类单元以及蝇茧蜂亚科Opiinae、内茧蜂亚科Rogadinae、优茧蜂亚科Euphorinae、甲腹茧蜂亚科Cheloninae、矛茧蜂亚科Doryctinae和蚜茧蜂亚科Aphidiinae等亚科内的属级分类单元进行了系统发育和进化研究。论文分为5个章节:文献综述、实验方法与原理、茧蜂科内6亚科的系统发育研究、茧蜂科的系统发育研究、总结和讨论。 第一章回顾了国内外茧蜂科Braconidae的研究历史,介绍了分类沿革、形态学、生物学和系统发育等方面的研究概况;第二章具体介绍了实验方法、实验步骤、分析软件及所依据的原理;第三章中,根据现有相应类群茧蜂专家认可的分类系统,对6个亚科内的类群分别进行分子数据与形态特征相结合的系统发育研究,在国内首次利用同源的核糖体28S rDNA D2变异区、线粒体16S rDNA和线粒体Cytb基因并结合成虫外部形态特征以PAUP(最大简约法MP)和MrBayes(最大似然法ML)对蝇茧蜂亚科Opiinae内10属22种,利用同源的核糖体28S rDNA D2变异区基因结合成虫外部形态特征对以PAUP(最大简约法MP)和MrBayes(最大似然法ML)对内茧蜂亚科Rogadinae中12属44种、优茧蜂亚科Euphorinae中19属23种、甲腹茧蜂亚科Cheloninae中8属9种和矛茧蜂亚科Doryctinae中15属16种,以及利用同源的线粒体ATPase 6、线粒体16S rRNA和核糖体18S rDNA基因并结合成虫外部形态特征以PAUP(最大简约法MP、邻近法NJ和最大似然法ML)和MrBayes(最大似然法ML)对蚜茧蜂亚科Aphidiinae中10属23种进行了系统发育研究;第四章中,以现有的茧蜂分类系统为基础,在国际上首次使用了线粒体16S rDNA、核糖体28S rDNA D2变异区的序列片段和核糖体18S rDNA这3个基因结合96个形态学特征以PAUP(最大简约法MP按不同的形态特征权重设置)和MrBayes(最大似然法ML以形态特征等权设置)对茧蜂科的35个亚科88属100种进行了系统发育分析。第五章中,对论文的研究内容作出总结。 研究共得到以下结果: (1) 共向GenBank中提交新序列78条,涉及茧蜂科29属44种,包含5种基因。 (2) 在茧蜂科内线粒体基因序列为“AT”碱基丰富序列,线粒体基因序列的转换低于颠换,而核糖体基因序列的颠换低于转换。 (3) 将内茧蜂亚科Rogadinae内的种类分成4个单系族(阔跗茧蜂族Yeliconini、横纹茧蜂族Clinocentrini、潜蛾茧蜂族Stiropiini和内茧蜂族Rogadini)合乎系统发育关系,并且横纹茧蜂族Clinocentrini处于系统发育树的基部位置;同时获得关于内茧蜂亚科Rogadinae中脊茧蜂属Aleoides新的分类系统,将其内部划分为4个亚属,即:新内茧蜂亚属Neorhogas、甲内茧蜂亚属Chelonorhogas、脊茧蜂亚属Aleoides和异配茧蜂亚属Heterogamus。

【Abstract】 This dissertation deals with the phylogenetic relationships among the subfamilies of the family Braconidae as well as within six subfamilies (Rogadinae, Doryctinae, Opiinae, Euphorinae, Aphidiinae, and Cheloninae) of the family. It mainly consists of five chapters: the general part, material and methods, phylogenetic relationships within six subfamilies, phylogenetic relationships within Braconidae, summary and discussion.Chapter one reviews briefly the taxonomic research history, morphology, biology and phylogeny of the family Braconidae. Chapter two describes the experimental methods, experimental protocol, and softwares for phylogenetic analyses. Chapter three introduces the results of the studies on the phylogenetic relationships within six subfamilies of Braconidae. It is the first time to examine: (a) the phylogenetic relationship within Opiinae using combined data of homologous 28S rDNA D2 region, 16S rDNA and Cytb gene sequences and morphological data using both PAUP* 4.0 (maximum parsimony) and MrBayes 3.0 B4 (maximum likelihood) from 22 in-group taxa representing 10 genera; (b) the phylogenetic relationships within Rogadinae (44 in-group taxa representing 12 genera), Euphorinae (23 in-group taxa representing 19 genera), Cheloninae (9 in-group taxa representing 8 genera) and Doryctinae (16 in-group taxa representing 15 genera) using the DNA sequence of homologous 28S rDNA D2 region combined with morphological data using both PAUP* 4.0 (maximum parsimony) and MrBayes 3.0B4 (maximum likelihood); (c) the phylogenetic relationships within Aphidiinae using the DNA sequence data of homologous mitochondrial ATPase 6, mitochondrial 16S rRNA and ribosomal 18S rDNA genes combined with morphological data using both PAUP* 4.0 (neighbor-joining, maximum parsimony and maximum likelihood) and MrBayes 3.0B4 (maximum likelihood) from 23 in-groups representing 10 genera. Chapter four provides the research results on the phylogenetic relationships among the Braconidae using the DNA sequences of homologous 16S rDNA, 28S rDNA D2 region and 18S rDNA genes combined with morphological data (96 characters with different weighty sets) using both PAUP* 4.0 and MrBayes 3.0 B4 from 88 in-group taxa representing 35 subfamilies. Finally, Chapter five provides the general conclusion and discussion.The major achievements of this dissertation are as follows:1. We submitted 78 new DNA sequences of 5 genes to GenBank, covering 44 species of 29 genera of Braconidae.2. The family Braconidae is "AT" base-bias in the DNA sequences of mitochondrial genes, and transition is lower than transversion, but transition is higher than transversion in ribosomal gene sequences.3. We support that the taxonomic system of subfamily Opiinae proposed by van Achterberg (1997) is the most reasonable one among the existing three taxonomic systems of the subfamily, which could arrange the majority of genera to a reasonable taxonomic position in the system. We also found the taxa within subfamily Opiinae parasitizing on the same type of hosts are grouped into the same clade in the phylogenetic trees, indicating that the types of host utilization reflect the relationships among taxa.4. Our results showed that the division of subfamily Rogadinae into four monophyletic tribes (Yeliconini, Clinocentrini, Stiropiini and Rogadinae) is well supported, and tribe Clinocentrini occupies the basal position within the subfamily. We also found that the genus Aleiodes can be divided into four subgenera (Neorhogas, Chelonorhagas, Aleoides and Heterogamus).5. The results revealed that subfamily Cheloninae can be divided into three clades, and tribe Chelonini is paraphyletic. The validity of Cascogaster as an independent genus is confirmed while genus Microchelonus should be lowered the rank to be a subgenus of genus Chelonus.6. The three-tribe system (Ephetrini, Praini and Aphidiini) of subfamily Aphidiinae is well supported, with tribe Ephetrini occupying the basal clade. We suggested that tribe Aphidiini could be further divided into three subtribes: Monoctonina, Tr

  • 【网络出版投稿人】 浙江大学
  • 【网络出版年期】2005年 05期
  • 【分类号】S476.3
  • 【被引频次】4
  • 【下载频次】940
节点文献中: 

本文链接的文献网络图示:

本文的引文网络