节点文献

化爆材料动态切削温度的薄膜热电偶测量原理及传感器研制

Principle and Development of Thin Film Thermocouple Sensor for Measuring Dynamic Cutting Temperature of Chemical Explosive Material

【作者】 曾其勇

【导师】 孙宝元;

【作者基本信息】 大连理工大学 , 机械制造及其自动化, 2005, 博士

【摘要】 本课题来源于中国工程物理研究院重大基金资助项目(No.2001Z0301):炸药件机械加工及仿真技术研究。本文主要研究其中化爆材料(炸药件)动态切削温度与切削力测试系统部分。研制的分刀片式半人工热电偶及薄膜热电偶两套动态测温测力系统均已经通过使用单位的验收并投入使用。 切削化爆材料过程中,由于化爆材料的不均匀性,其内部随机分布硬质点,当切到某个硬质点时,或由于切削变形和振动等原因,会突然产生大量的切削热而使工件出现瞬时高温脉冲,当这一瞬时高温超出一定的范围时,会引爆工件而发生重大恶性事故。因此快速而准确地测量化爆材料的动态切削温度对国防军工部门的安全、高效生产有重大的意义。 切削温度测量广泛使用的是自然热电偶法。但当被加工材料是非金属时,就不能用自然热电偶法测量切削温度。也不宜采用在刀具内埋置人工热电偶的方法,因为埋置热电偶时,热电偶接点与刀尖多少有些距离,而刀尖处的温度梯度较大,因而不能直接测量工件的温度。由于切削化爆材料时要加冷却液,因此也不适合采用非接触的红外测温法。针对化爆材料切削的特点,本文研制出了一种将切削与测温功能集成于一体的新型分刀片式半人工热电偶及薄膜式热电偶快速温度传感器,在切削化爆材料的同时可以进行动态切削温度的测量。主要研究内容具体包括: (1) 镍铬-高速钢(NiCr-HSS)分刀片式半人工热电偶测温刀头的结构设计、加工制作与安装;在测温范围0℃~600℃内静态标定半人工热电偶,得出热电偶的灵敏度不低于S=12.9μV/℃,满量程非线性误差小于0.3%;采用快速投掷法动态标定了半人工热电偶,根据其阶跃响应曲线计算出其时间常数τ为12.5ms。 (2) 研制LC-EX-03 Ⅰ型半人工热电偶冷端温度补偿与输出信号放大处理器;设计化爆材料动态切削温度与切削力测试系统,引入相位超前校正网络后整个测试系统的时间常数τ减小到1.94ms;分析得到测试系统的相对测温误差小于2.13%,重复性误差在1%以内。 (3) 采用微波电子回旋加速共振产生等离子体源增强射频反应非平衡磁控溅射技术首次成功在W18Cr4V高速钢基底上沉积绝缘性能良好、致密均匀、具有正确化学配比的SiO2薄膜。通过大量的实验得出制备SiO2薄膜的最佳工艺参数。 (4) 对制备的SiO2薄膜做了成分分析、三维形貌和二维形貌分析,并测量了SiO2薄膜的绝缘电阻、与高速钢基底的附着力、摩擦磨损性能及膜厚等。 (5) 详述了薄膜热电偶的测温原理及薄膜尺寸效应;NiCr-NiSi薄膜热电偶测温刀头的结构设计、加工制作与安装;采用多弧离子镀方法在镀有绝缘膜的高速钢基体上制备NiCr、NiSi热电偶薄膜,并分析了薄膜成分;在测温范围0℃~600℃内静态标定薄膜热电偶,得出薄膜热电偶的灵敏度为S=20.9μV/℃,满量程非线性误差小于0.32%。 (6) 建立薄膜热电偶理论传热学模型,推导出薄膜热电偶本身的时间常数τ。化爆材料动态切削温度的薄膜热电偶测t原理及传感器研制 (7)研制出抗干扰性能更好的LC一Ex一03n型冷端温度补偿及调理器;用可调Q值的激光脉冲方法动态标定了整个薄膜热电偶测温系统的响应时间,测得的系统时间常数:为o.sms;分析得到测试系统的相对测温误差小于1.19%,重复性误差在1%以内。 (8)初步探索用微波电子回旋加速共振产生等离子体源增强射频非平衡磁控溅射技术制备NICr--NISi热电偶薄膜。 (9)分刀片式半人工热电偶及薄膜热电偶测温刀头用于温度脉冲捕捉模拟切削实验、化爆材料的正交切削实验、不同刀具参数的单因素对比切削实验。实验结果表明,影响化爆材料切削温度最主要的因素是切削速度,其次是切削深度,再次是进给量;增大刀具前角、刀尖角,减小刀具主偏角有益于降低化爆材料的切削温度。 (10)分刀片式半人工热电偶与薄膜热电偶测温刀头用于现场化爆材料的切削,整个动态切削温度与切削力测试系统运行良好。关键词:切削温度;薄膜热电偶:半人工热电偶;磁控溅射;离子镀;标定;切削实验; 化爆材料

【Abstract】 The dissertation is supported by China Academy of Engineering physical important fund subject (No. 2001Z0301). The present work dedicates to the research on the dynamical cutting temperature and cutting force measuring system when machining chemical explosive material. The newly developed NiCr/HSS semi-artificial thermocouple and NiCr/NiSi thin film thermocouple measuring systems are submitted to use on the spot.Hard particles distribute randamly inside chemical explosive materials. Large quantities of heat generates and instantaneous high workpiece temperature pulse will occur when cutting one of these particles. There will be much danger when the workpiece temperature exeeds a special value. An effective method for measuring such instananeous workpiece temperature in war industry enterprise is badly needed in order to improve the productivity and assure the safety of processing.The tool/chip thermocouple is a widely used technique for measuring cutting temperature. But the tool and chip cannot form into a natural thermocouple when machining non-metal materials such as chemical explosive material. The implanted thermocouple cannot measure the workpiece temperature directly because the thermocouple junction is away from the workpiece. Infrared radiation pyrometer can response fast. Unfortunately, such systems are costly and the machining has to be performed dry. In allusion to the features of cutting chemical explosive material, new type of fast response temperature sensors-NiCr/HSS semi-artificail thermocouple and NiCr/NiSi thin film thermocouple are developed, which integrate both cutting and temperature measuring functions. The main works dedicate to:(1) Structure design, machining and fixing of NiCr/HSS (W18Cr4V high speed steel) semi-artificial thermocouple temperature measuring cutter. Static calibration of the semi-artificial thermocouple is carried out within the temperature range: 0 ℃~600℃. The sensitivity of the thermocouple is not less than 12.9 μ V/℃. The non-linearity error is less than 0.3%. The response time of the thermocouple is calibrated and calculated as 12.5 ms.(2) The LC-EX-03 I type of reference temperature compensation and output signal amplifier for the semi-artificial thermocouple is developed. The dynamical cutting temeprature and cutting force measuring system for chemical explosive material machining is contrived. The response time of the whole measuring system after adopting the phase-leading circuit is decreased to 1.94 ms. The relative temperature error of the measuring system is less than 2.13%. The repetition error of the system is within 1%.(3) SiO2 insulating film is deposited on HSS substrate for the first time by means of Microwave Electron Cyclotron Resonance (MW-ECR) plasma enhanced Radio Frequency (RF) reaction non-balance magnetron sputtering technique. The SiO2 film has good insulating performance, density, uniform and proper stoichiometry. The optimal parameters for preparing SiO2 film are found.(4) The AFM and SEM images of surface topograph for SiO2 film are detected. Theelement percentage of the film are analysed by XPS and FT-IR. The DC insulation resistence, adhesion force, friction and thickness of the SiO2 film are measured.(5) The measuring principle of the thin-film thermocouple and the size effect of thin-film are expatiated. Structure design, manufacturing and fixing of the NiCr/NiSi thin film thermocouple temperature measuring cutter are completed. NiCr/NiSi thin films are plated on the insulated HSS cutter. Static calibration of the thin film thermocouple is carried out. The sensitivity of the thermocouple is 20.9 μV/℃. The non-linearity error is less than 0.32%.(6) The theoretic thermal conduction model of the thin film thermocouple is deduced. And the response time of the thin film thermocouple is carried out.(7) Newly developed LC-EX-03II type of reference temperature compensation and output signal amplifier for the thin film thermocouple has better noise filter performance. Dynamic calibration of the NiCr/NiSi

节点文献中: 

本文链接的文献网络图示:

本文的引文网络