节点文献
基于外骨骼技术的机器人远程控制
Teleoperation of Internet Based Robot Using a Human Arm Exoskeleton
【作者】 李晓明;
【导师】 陈鹰;
【作者基本信息】 浙江大学 , 机械电子工程, 2004, 博士
【摘要】 机器人遥操作系统是典型的人机一体化系统,其能力的发挥最终取决于人(操作者)和机(机器人)之间的配合程度。传统的遥操作系统其人机交互设备通常是键盘、操纵杆等,这些设备通常只能进行简单的动作示教,或对机器人关节或者末端执行器进行单个或少数几个自由度的孤立控制。当被控机器人具有较多的自由度时,遥控其完成一些复杂的工作即使对较为熟练的操作者而言也是很困难的。究其原因,是由于这些设备造成了人机间信息耦合带宽较低,或者说这些设备的信息耦合能力较差造成的。有一类可穿戴的机器人(或机构)则可以解决该矛盾,这就是外骨骼机器人,简称外骨骼。其优势在于能够极大的扩展人与机器人之间的信息(主要是运动学信息)流通通道,使得操作者可以利用人的肢体运动的多个自由度同时控制机器人的多自由度。本文的主要工作是对基于外骨骼的遥操作系统及其相关技术进行了探索性研究。 机器人遥操作系统的本质是人机之间,以及机器设备之间的协同,合作,而Internet技术代表的是开放,分布式和互联。在Internet时代,如何构造更好的遥操作软件平台以适应遥操作系统主客体日益发展变化的性能对于遥操作系统体系结构的研究至关重要。因此,本论文抛弃了传统的基于B/S或者C/S模式的系统架构,而采用目前比较先进的对等网技术实了一种基于P2P分布式网络模型的模块化可重用的遥操作系统框架。该框架以资源的动态发现为基础,以XML作为模块和资源的本体描述方法,以事件和管道作为子系统间底层通讯平台,实现了模块间以及各个子系统之间的协调工作,从而使得整个远程控制系统能够平稳运行在一个动态的、协同的、并行的、有实时控制要求的环境中。 外骨骼以其卓越的人机信息耦合能力,成为实现该遥操作系统的关键,而难点在于其机构的设计。在分析现有的外骨骼机构形式和特点后,本文提出了采用“并联三自由度机构”+“四连杆机构”+“并联三自由度机构”来实现外骨骼的“肩”、“肘”和“腕”等关节,以气缸为驱动元件的设计方案。相比其他外骨骼,该机构具有重量轻,可穿戴性强,操作灵活等优点。本文在分析并联三自由度机构的数学模型的基础之上建立了其运动学正、逆解方程及其雅克比矩阵计算公式,并利用这些方程和公式计算出了摘要并联机构的工作空间和灵活工作空间。通过分析并联机构主要机构参数及运动副限制条件与机构运动空间和机构运动灵活性之间的关系,得到了设计并联机构的几个原则,并在此原则的指导下,设计加工出了气动手臂外骨骼的原型机。 以Internet为信息谋介的遥操作系统中,由于网络数据传输存在的不稳定时延对控制系统的稳定性影响很大。为了在根本上解决系统稳定性的问题,本文采用了基于非时间参量的控制和协调方法,并对其进行了拓展,发展出了一种基于非时间参量的“混合”控制系统和结构并利用该方法成功的实现了对远程机器人的实时控制。该方法还具有的优点包括其控制算法设计的独立性、系统的可扩展性和适应性。通过简单的扩展就可以将该控制方法和模型应用到远程机器人的双向控制中去。 由于外骨骼信息藕合的双向性,双向控制是带有反馈的遥操作系统的基本控制结构,其通常是以<速度、力>的形式进行藕合的。然而对于遥操作系统而言,由于网络中的不稳定时延,采用力反馈极易导致系统的不稳定以及反馈效果变差。本文提出了以位置反馈取代力反馈,提高了系统的稳定性和良好的反馈效果,而外骨骼位置闭环控制的实现以及外骨骼与人体力搞合的本质特性使得操作者仍然可以通过施加力来控制远程机械手,保证了操作过程的真实感和控制效果。而且该本文提出的双向控制模型把人这一控制系统中最不稳定的因素从被控对象转变成了施控主体,无需建立复杂的人体控制模型,简化了控制系统的设计。此外,本文将基于非时间参量的混合控制模型进行了推广,使之能够适用于遥操作系统的双向控制,并着重对外骨骼机器人的控制进行了研究,包括气缸执行元件的建模,外骨骼动力学建模,利用线性化技术对外骨骼的非线性模型进行线性化处理等。 最后,本论文对外骨骼遥操作系统进行了系统综合和实验研究,建立了外骨骼遥操作系统的软硬件平台,并建立了单自由度的外骨骼遥操作双向控制实验系统并进行了双向控制实验。本文对实验结果进行了分析,证实了本文提出了双向控制模型的可行性、遥操作理论的正确性。关键词:外骨骼,遥操作,对等网,PZP,并联机器人,3一RPS,基于非时间参量的,混合控制模型,双向控制,气动伺服系统,时变时延,人机藕合,人机一体化第11页,共133页
【Abstract】 TeleRobotic system is a typical Man-Machine system, which requires the cooperation of both the human controller and the remote robots. Keyboard and joystick are often used for information coupling between human beings and robots in such systems, but there are shortcomings: these devices can only teach the robot some limited simple actions, or adjust the robot joints sequentially. In some occasions which require complex moving trajectory or compound movemenet of all joints, with these devices, even the most skillful operators can hardly achieve it. The reason is the limited bandwidth of communication between human and robots. So in this paper we attempted the exoskeleton robot in the telerobotic case to prove that the exoskeleton is useful in man-machine coupling.The framework of the system is introduced first. The essential of telerobotic system is integration, inter-connection, open and distribution, which requires the system can be implemented on different hardware and software platforms, network environments, and self-evolving. So a peer to peer system framework is adopted in developing a distributed, module based, reusable teleoperation framework in this paper, instead of traditional B/S or C/S model. Its core principle is the resource dynamic location principle and XML based ontology, on which the event and pipe as the communication layer of the whole framework are constructed. This framework ensures the telerobotic system an dynamic, cooperative, parallel and real time based environment.Mechanical device is the basis of such research. The parallel 3-RPS mechanism is adoped as the main parts of the exoskeleton hardware, which composes the "shoulder" and the "wrist". Kinematical research of the 3-RPS mechanism is conducted, including the invese kinematics, working space analysis, dexterity analysis and its error modeling. These researches have set up the principles for the optimal selection of exoskeleton mechanism parameters.With the rapid development of Internet technology, Internet plays an increasingly important role in teleoperation. Internet based telerobotic systems have to face a difficulty, the time variant time delay in the control loop, which generally causes the systems to be in-stable. To solve this problem, a new hybrid event based control architecture were proposed in this paper. A non-time variable is introduced together with time referenced system, and the non-time reference scalar is used in cooperating the local controller subsystem and the remote robot subsystem. Besides the promised stability, this architecture also claims the adaptivity and extendability.Bilateral control is the basic control structure of the exoskeleton based teleoperation system, in which the coupling information parameter are usually the velocity force pair <velocity, force>. Taking force as the response from robot in Internet involved telerobotic system is apt to be instable due to the time delay brought by Internet. In this paper, position feedback is used instead and the model of bilateral control is proposed. The modification ensures the system stability and good performance under time delay. What’s more, it excludes the human being, the most unsteady element, from the control system, so it need not building the complicated human model and so that simplifies the design of control system. Some points on the control of the exoskeleton are also discussed in the paper.At the end of this thesis, a synthesis of the complete exoskeleton-based tele-operation system has been done and the implementation of the hardware and software system are provided. A simplified one degree freedom bilateral control experimental system has been established and experiments have been conducted. The result of the experiments prove that the Internet based control method and the bilateral control model are correct and effective.
【Key words】 Exoskeleton; Telerobotic; Peer-to-Peer; Parallel Robot; 3-RPS; Non- Time Referenced; Hybrid Control Model; Bilateral Control; Pneumatic Servo Control; Time Variant Time Delay; Man-Machine Coupling; Man-Machine System;